Funct. Mater. 2019; 26 (2): 358-365.

doi:https://doi.org/10.15407/fm26.02.358

Effect of the carbon nanotubes on mechanochemical synthesis of the Fe-TiC nanocomposite

O.Nakonechna1, M.Dashevskyi1, N.Belyavina1, L.Kapitanchuk2, D.Stratiichuk3, V.Makara1

1Department of Physics, T.Shevchenko University, 4 Glushkov Ave., 03022 Kyiv, Ukraine
2Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Malevich Str., 03680 Kyiv, Ukraine
3V.Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., 04074 Kyiv, Ukraine

Abstract: 

In this work Fe-TiC (25 wt. %) nanocomposite was manufactured by HP-HT sintering of mechanically alloyed charge of the elemental Fe, Ti and carbon nanotubes. Structural features of the material obtained were characterized by X-ray diffraction and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy at each stage of synthesis. Mechanical alloying of an initial charge in a high energy planetary ball mill leads to the formation of the TiC carbide after 40 min of processing. Milling process was accompanied by a steady decrease of the grain sizes of α-Fe and TiC constituents. Besides, the fine-grained TiC particles were homogenously distributed in the nanocrystalline α-Fe binder matrix providing a sufficiently high (11.3 GPa) Vickers hardness of the cermet.

Keywords: 
nanocomposite, powder metallurgy, electron microscopy, hardness, phase transformation.
References: 

1. K.K.Chawla, Composite Materials: Science and Engineering, Springer-Verlag, New York (2012).

2. Y.Nishida, Introduction to Metal Matrix Composites: Fabrication and Recycling, Springer-Verlag, New York (2013). https://doi.org/10.1007/978-4-431-54237-7_5

3. A.Farid, S.Guo, X.Yang, Y.Lian, J. Univ. Sci. Technol. B, 13, 546 (2006). https://doi.org/10.1016/S1005-8850(06)60111-4

4. C.Jin, C.C.Onuoha, Z.N.Farhat et al., Tribology Intern., 105, 250 (2017). https://doi.org/10.1016/j.triboint.2016.10.012

5. M.Sheikhzadeh, S.Sanjabi, Mater. Design, 39, 366 (2012). https://doi.org/10.1016/j.matdes.2012.02.011

6. W.Jing, Y.Wang, Mater. Lett., 61, 4393 (2007). https://doi.org/10.1016/j.matlet.2007.02.011

7. M.Razavi, M.S.Yaghmaee, M.R.Rahimipour, S.S.Razavi-Tousi, Intern. J. Mineral Proc., 94, 97 (2010). https://doi.org/10.1016/j.minpro.2010.01.002

8. M.R.Rahimipour, M.Sobhani, Metallurg. Mater. Trans. B, 44, 1120 (2013). https://doi.org/10.1007/s11663-013-9903-z

9. I.W.M.Brown, W.R.Owers, Current Appl. Phys.s, 4, 171 (2004). https://doi.org/10.1016/j.cap.2003.11.001

10. A.Saidi, A.Chrysanthou, J.V.Wood, J.L.F.Kellie, J. Mater. Sci., 29, 4993 (1994). https://doi.org/10.1007/BF01151089

11. A.Saidi, A.Chrysanthou, J.V.Wood, J.L.F.Kellie, Ceramics Int., 23, 185 (1997). https://doi.org/10.1016/S0272-8842(96)00022-3

12. K.Das, T.K.Bandyopadhyay, S.Das, J. Mater. Sci., 37, 3881 (2002). https://doi.org/10.1023/A:1019699205003

13. Y.Chen, Scripta Materialia, 36, 989 (1997). https://doi.org/10.1016/S1359-6462(96)00504-0

14. A.Jam, N.Leila, P.Mansour, Ceramics Intern., 43, 2448 (2017). https://doi.org/10.1016/j.ceramint.2016.11.039

15. M.Sherif El-Eskandarany, J.. Alloys Comp., 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7

16. Q.Yuan, Y.Zheng, H.Yu, Intern. J. Refractory Metals and Hard Mater., 27, 696 (2009). https://doi.org/10.1016/j.ijrmhm.2008.11.003

17. H.Jia, Z.Zhang, Z.Qi et al., J Alloys Comp., 472, 97 (2009). https://doi.org/10.1016/j.jallcom.2008.04.070

18. B.Ghosh, S.K.Pradhan, Mater. Chem. Phys., 120, 537 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.048

19. O.Boshko, O.Nakonechna, N.Belyavina et al., Adv. Powder Technol., 28, 964 (2017). https://doi.org/10.1016/j.apt.2016.12.026

20. O.Nakonechna, M.Dashevskyi, N.Belyavina, Metallofizika I Noveishie Tekhnologii, 40 (2018) in press.

21. O.Boshko, O.Nakonechna, M.Dashevskyi et al., Adv. Powder Technol., 27, 1101 (2016). https://doi.org/10.1016/j.apt.2016.03.019

22. V.K.Pecharsky, P.Y.Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer US (2009),

23. M.Dashevskyi, O.Boshko, O.Nakonechna, N.Belyavina, Metallofizika I Noveishie Tekhnologii, 39, 541 (2017). https://doi.org/10.15407/mfint.39.04.0541

24. G.K.Williamson, W.H.Hall, Acta Metallurgica, 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

25. A.R.Miedema, N.V.Philips, J. Less-Common Metals, 46, 67 (1976). https://doi.org/10.1016/0022-5088(76)90180-6

26. J.H.Jang, I.G.Kim, H.K.D.H.Bhadeshia, Mater Sci Forum, 638-642, 3319 (2010). https://doi.org/10.4028/www.scientific.net/MSF.638-642.3319

27. A.R.Jam, M.Razavi, L.Nikzad, Sci. Engin. Composite Mater., 24, 739 (2017)

.

Current number: