Funct. Mater. 2019; 26 (2): 424-428.


Measuring the amplitude-time characteristics of a pulsed high-intensity gamma radiation accelerator Varian Clinac 600C with a CdTe detector

A.N.Grigoryev1, Z.V.Bilyk1, Yu.V.Litvinov2, I.Yu.Cherniavskiy1, N.E.Polyansky2, V.P.Starenky3, I.A.Samofalov3, E.F.Voronkin4, O.O.Sosnutska4, S.Yu.Petrukhin1, G.M.Suchkov5, N.G.Bilyk1, S.N.Indykov1, V.B.Matykin1, S.A.Pysariev1, O.V.Matykin1, S.N.Menshov1

1Military Institute of Tank Troops of the National Technical University Kharkiv Polytechnic Institute, 192 Poltavskyi Shliakh Str., 61098 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3Grigoriev Institute for Medical Radiology, National Academy of Medical Sciences of Ukraine, 82 Pushkinska Str., 61024 Kharkiv, Ukraine
4State Scientific Institution Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
5National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine


Measurements of the amplitude-time characteristics of a high-intensity pulsed gamma radiation accelerator Varian Clinac 600C with photon energy from 1 to 6 MeV on the equipment using a CdTe detector in both current and pulse modes have been carried out. It is shown that the operation of the CdTe detector in the current mode allows one to control the frequency of the accelerator pulses, and the operation of the CdTe detector in the pulse mode allows for determining the dose in each pulse with an error of 0.06 %. Monitoring the operation of the accelerator Varian Clinac 600 C shows that the pulses come in batches; within the batch, the pulse repetition period corresponds to a specified frequency at the accelerator, while the repetition period of the batches differs from the specified frequency. Dose control in the pulses showed its 5 % excess over the average value during the first 2.5 s of the accelerator operation, whereas during the last 2 s, the dose reduction by 1.8 % was observed.

linear accelerator, pulsed gamma radiation, telluride cadmium detector, pulse frequency.

1. V.P.Stranky, L.O.Averyanova, Methods and Means of Radiation Medicine. P.1. Devices of Remote Beam Therapy, KNURE, Kharkov (2014).

2. A.N.Dovbnya, A.V.Mazilov, Electron Accelerators: Dosimetry and Radiation Risks, Miskdruk, NSC KhPTI, Kharkov (2014).

3. A.I.Gerasimov, V.S.Gordeev, S.A.Gornostay-Polsky et al., Book of Reports. Instruments and Technique for the Experiment, RFNC-AUSRIEP, Sarov (2006), p.73.

4. A.A.Krasnykh, I.A.Miloychikova, Yu.M.Chere-pennikov et al., Scientific Statements of Belgorod State University, Ser.: Mathematics, Physics (2017) [in Russian].

5. N.Korolyova, T.Chikova, in: Proc. VII-th Intern. Sci. Conf. for Youngscientists, Graduates, Master and PhD students, Minsk (2017), p.124.

6. S.Nakamura, T.Mukai, M.Manabe et al., in: Proc. 2011 Annual Symposium on Nucl. Data, JAEA-Conf 2012-001 (2012), p.165.

7. S.Abbaspour, B.Mahmoudian, J.P.Islamian, World J. Nucl. Med., 16, 101 (2017).

8. A.V.Rybka, L.N.Davydov, I.N.Shlyakhov et al., Nucl. Instrum. Meth. Phys. Res., A: 531, 147 (2004).

9. S.L.Elyash, A.V.Rodigin, T.V.Loiko et al., Pribory i Tehnika Eksperimenta, 4, 86 (2011).

10. C.Scheiber, Nucl. Instrum. Methl. Phys. Res. A, 448, 513 (2000).

11. C.Scheiber, G.CGiakos, Nucl. Instrum. Meth. Phys. Res. A, 458, 12 (2001).

12. V.Nagarkar, M.Squillante, G.Entine et al., Nucl. Instrum. Meth. Phys. Res. A, 322, 623 (1992).

13. A.N.Grigoryev, A.V.Sakun, V.V.Marushchenko et al., Functional Materials, 21, 352 (2014).

14. R.Jeraj, Th.R.Mackie, J.Balog et al., Med. Phys., 31, 2 (2004).

15. V.M.Aulchenko, D.N.Grigoriev, V.V.Zhulanov et al., Autometry, 52, 122 (2016).

16. Yu.V.Litvinov, O.M.Grigoriev, Z.V.Bilyk et al., Bull. NTU KhPI, 41, 82 (2017).

17. T.Patrick, K.Toshihiko, S.Ionel et al., URL: arXiv:1607.00337v1 [nucl-th].

18. B.Saroj, S.PS, S.Mayank et al., J. Neutr Res, 19, 169 (2017).


Current number: