Вы здесь

Funct. Mater. 2019; 26 (3): 454-461.

doi:https://doi.org/10.15407/fm26.03.454

Intracenter processes induced by electron beam and 337 nm laser light in CsI:Tl

V.Yakovlev1, L.Trefilova2, A.Karnaukhova1, A.Shpilinskaya3

1Tomsk Polytechnic University, 30 Lenin Ave., 634034 Tomsk, Russian Federation
2National University of Civil Defence of Ukraine, 94 Chernyshevska Str., 61023 Kharkiv, Ukraine
3Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Investigated are the spectral-kinetic properties of the activator luminescence excited in CsI:Tl crystal by a pulsed electron beam and by a pulsed nitrogen laser at λ = 337.1 nm, that corresponds to the long-wave decline of the A-absorption band. It is found that the decay kinetics of 2.6 and 2.25 eV luminescence bands excited by an electron beam at 80 K is mono-exponential with the time constants τ = 4 μs and τ = 13 μs, respectively. The decay kinetics of each from the luminescence bands under the laser excitation is bi-exponential due to the presence of one more component with time constant τ = 900 ns. This sub-microsecond component dominates in the bi-exponential kinetics, and the value of its time constant is determined by the time of the electron transfer from the metastable ψ sub-level of the excited 62P3/2 state to the ground 62P1/2 state of Tl0 center. Phonon-assisted processes causing population of the radiative states of Tl+ centers responsible for 3.0, 2.25 and 2.6 eV luminescence bands are discussed in detail.

Keywords: 
thallium doped cesium iodide, luminescence, Tl<sup>+</sup>-perturbed exciton, decay kinetics, charge transfer.
References: 

1. S.Masunaga, I.Morita, M.Ishiguro, J. Phys. Soc. Japan, 21, 638 (1966). https://doi.org/10.1143/JPSJ.21.638

2. M.J Stillman, P.W.M.Jacobs, K.Oyama Gannon, D.J.Simkin, Phys. Status Solidi B, 124, 261 (1984). https://doi.org/10.1002/pssb.2221240128

3. V.Nagirnyi, A.Stolovich, S.Zazubovich et al., J. Phys.:Condens. Matter., 7, 3637 (1995). https://doi.org/10.1088/0953-8984/7/18/026

4. Ranfagni, D.Mugnai, M. Bacci et al., Adv. in Physics, 32, 823 (1983). https://doi.org/10.1080/00018738300101621

5. S.A.Chernov, L.Trinkler, A.I.Popov, Rad. Eff. Def. Solids, 143, 345 (1998). https://doi.org/10.1080/10420159808214037

6. V.Yakovlev, L.Trefilova, A.Meleshko et al., J. Luminescence, 155, 79 (2014). https://doi.org/10.1016/j.jlumin.2014.05.019

7. L.Trefilova, B.Grinyov, V.Alekseev et al., IEEE Trans. Nucl. Sci., 55, 1263 (2008). https://doi.org/10.1109/TNS.2008.924055

8. V.Yakovlev, L.Trefilova, V.Alekseev et al., Functional Materials, 25, 13 (2018). https://doi.org/10.15407/fm25.01.013

9. A. Shpilinskaya, A. Kudin, A. Kolesnikov, A. Didenko, K. Kudin, Probl. Atom. Sci. Techn., 3/115, 118 (2018).

10. E.P. Kisil, L.I. Philippovich, V.V. Varchenko, K.N. Belikov, Methods and objects of the chemical analysis, 9/3, 125 (2014). https://doi.org/10.17721/moca.2014.125-129

11. V.Yakovlev, L.Trefilova, A.Meleshko, J. Luminescence, 129, 790 (2009). https://doi.org/10.1016/j.jlumin.2009.02.012

12. L.Trefilova, V.Yakovlev, A.Meleshko, N.Kosinov, Rad. Meas., 45, 328 (2010). https://doi.org/10.1016/j.radmeas.2009.10.099

13. X.Lu, S.Gridin, R.T.Williams et al., Phys. Rev. Appl., 7, 014007 (2017). https://doi.org/10.1103/PhysRevApplied.7.014007

14. C.Brecher, V.V.Nagarkar, V.Gaysinskiy et al., Nucl. Instr. and Meth. A, 537, 117 (2005). https://doi.org/10.1016/j.nima.2004.07.247

15. A.I.Popov, S.A.Chernov, L.E.Trinkler, Nucl. Instr. Meth. Phys. Res B, 122, 602 (1997). https://doi.org/10.1016/S0168-583X(96)00664-7

16. S.Zazubovich, Radiat. Meas., 33, 699 (2001). https://doi.org/10.1016/S1350-4487(01)00086-5

17. V.Gutan, L.Shamovskii, A.Dunina, B.Gorobets, Opt. Spectr., 37, 407 (1974).

18. T.Sidler, J-P.Pellaux, A.Nouaihat, M.Aegerter, Solid State Commun., 13, 439 (1973). https://doi.org/10.1016/0038-1098(73)90480-8

19. Curie, Luminescence in Crystals. ed. Methuen & Co., London (1963).

20. M.Nikl, J.Hlinka, E.Mihokova et al., Phil. Mag. B, 67, 627 (1993). https://doi.org/10.1080/13642819308219313

21. L.N.Kantorovich, E.A.Kotomin, V.N.Kuzovkov et al., Models of Defect Processes in Wide-gap Solids, ed. Zinatne, Riga (1991).

22. R. T. Williams, K. B. Ucer, J.Q. Grim, K.C.Lipke, L. Trefilova, W.M. Moses, IEEE Trans. Nucl. Sci., 57, 3, 1187 (2010). https://doi.org/10.1109/TNS.2009.2033184

23. K.B.Ucer, G.Bizarri, A.Burger et al., Phys. Rev. B, 89, 165112 (2014). https://doi.org/10.1103/PhysRevB.89.165112

24. F.E. Williams, J. Phys. Chem. Solids, 12, (3-4), 265 (1960). https://doi.org/10.1016/0022-3697(60)90048-2

.

Current number: