Funct. Mater. 2019; 26 (3): 466-471.

doi:https://doi.org/10.15407/fm26.03.466

Interaction of oxyhalide anions with Ce3+ ions and CeO2-x nanoparticles in water solutions

V.V.Seminko1,2, P.O.Maksimchuk1,2, G.V.Grygorova1, O.O.Sedyh1, A.V.Aslanov1, O.G.Avrunin2, V.V.Semenets2, Yu.V.Malyukin1,2

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Kharkiv National University of Radioelectronics, 14 Nauky Ave., Kharkiv, Ukraine

Abstract: 

Cerium oxide (CeO2-x) nanoparticles are well-known for their role in catalytic removal of reactive oxygen species (including hydrogen peroxide, superoxide anions and hydroxyl radicals). In the paper the interaction between oxyhalide anions of different kinds with Ce3+ ions in CeCl3 water solutions and the same ions in cerium oxide nanoparticles was compared using Ce3+ luminescence. Addition of hypochlorite and periodate anions to water solutions leads to Ce3+→Ce3+ oxidation, and, so to concentration-dependent decrease of Ce3+ luminescence intensity, which is reversible for nanoceria, but not for CeCl3 water solutions. Dependence of Ce3+ luminescence on oxidant concentration and reversibility of Ce3+/Ce3+ ratio open the way to apply nanoceria for sensing and removal of oxyhalides in drinking water.

Keywords: 
nanoceria, oxyhalide anions, luminescence, oxidants.
References: 

1. M. Bolyard, P. S. Fair, D. P. Hautman, Environ. sci. techn., 26, 1663 (1992). https://doi.org/10.1021/es00032a028

2. J. Kim, Y. Chung, D. Shin et. al., Desalination, 151, 1 (2003). https://doi.org/10.1016/S0011-9164(02)00967-0

3. S. Kanitz, Y. Franco, V. Patrone et. al., Environ. health perspect., 104, 516 (1996). https://doi.org/10.1289/ehp.96104516

4. M. I. Cedergren, A. J. Selbing, O. Lofman, B. A. Kallen, Environ. res., 89, 124 (2002). https://doi.org/10.1006/enrs.2001.4362

5. L. Charles, D. Pepin, J. Chromatography A, 804, 105 (1998). https://doi.org/10.1016/S0021-9673(97)01244-2

6. J. Zhang, X. Yang, Analyst, 138, 434 (2013). https://doi.org/10.1039/C2AN36287B

7. A. S. Karakoti, S. Singh, A. Kumar et. al., J. Amer. Chem. Soc., 131, 14144 (2009). https://doi.org/10.1021/ja9051087

8. E. G. Heckert, A. S. Karakoti, S. Seal, W. T. Self, Biomaterials, 29, 2705 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.014

9. T. Pirmohamed, J. M. Dowding, S. Singh et. al., Chemical communications, 46, 2736 (2010). https://doi.org/10.1039/b922024k

10. R. N. McCormack, P. Mendez, S. Barkam et. al.,, C. J. Neal, S. Das, S. Seal, The Journal of Physical Chemistry C, 118, 18992-19006 (2014). https://doi.org/10.1021/jp500791j

11. Yu. Malyukin, V. Klochkov, P. Maksimchuk et. al., Nanoscale Res Lett, 12, 566 (2017). https://doi.org/10.1186/s11671-017-2339-7

12. Y. Malyukin, V. Seminko, P. Maksimchuk et. al., Opt. Mater., 85, 303 (2018). https://doi.org/10.1016/j.optmat.2018.08.063

13. Y. Malyukin, P. Maksimchuk, V. Seminko et. al., J. Phys. Chem. C, 122, 16406 (2018). https://doi.org/10.1021/acs.jpcc.8b03982

14. I. Celardo, J. Z. Pedersen, E. Traversa, L. Ghibelli, Nanoscale, 3, 1411 (2011). https://doi.org/10.1039/c0nr00875c

15. V. Seminko, P. Maksimchuk, I. Bespalova et. al., Phys. Status Solidi (b), 254 (2017) DOI: 10.1002/ pssb.201600488

16. P.O. Maksimchuk, V.V. Seminko, I.I. Bespalova, A.A. Masalov, Functional Materials, 21, 254 (2014).

17. Y. Y. Tsai, J. Oca-Cossio, S. M. Lin et. al., Future Medicine, 3, 637 (2008). https://doi.org/10.2217/17435889.3.5.637

18. X. Hao, A. Yoko, C. Chen et. al., Small, 14, 1802915 (2018). https://doi.org/10.1002/smll.201802915

19. B. C. H. Steele, J. M. Floyd, Oxygen Self-diffusion and Electrical Ttransport Properties of Nonstoichiometric Ceria and Ceria Solid Solutions. Imperial Coll. of Sci. and Tech., London (1971).

Current number: