Вы здесь

Funct. Mater. 2019; 26 (3): 507-513.

doi:https://doi.org/10.15407/fm26.03.507

Features of the contact interaction in the TiC-NiCrBSiC system

A.E.Terentiev

I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03680 Kyiv, Ukraine

Abstract: 

The wetting and interfacial interactions between the sintered TiC ceramic and Ni-based eutectic self-fluxing alloy of NiCrBSiC system were investigated by the sessile drop technique in a vacuum environment at 1100°C. The wetting kinetic was studied and the contact angles were determined. The NiCrBSiC alloy spreads on the TiC substrate forming the contact angle of 34°. It was established that chromium is a phase active element in this system. The main processes of interfacial interaction were the slight dissolution of the TiC ceramic over Ni-based alloy grain boundaries and formation of chromium carbides. Thus, TiC-NiCrBSiC system is proved to be a good candidate for the development of wear-resistant NiCrBSiC alloy-based composite materials reinforced with TiC particles due to the low contact angle values and negligible interaction between the refractory compound and alloy components.

Keywords: 
self-fluxing alloy, wetting, contact angle, interfacial area, composite powder materials, thermal-sprayed coatings.
References: 

1. T.A.Terekhina, S.Ya.Pirogov, V.F.Sokolov, V.A.Oleynik, Poroshk. Metall., 53, 16 (1980).

2. X.Wang, M.Zhang, Z.Zou, S.Qu, Surf. Coat. Technol., 195, 16 (2002). https://doi.org/10.1016/S0257-8972(02)00496-6

3. O.Umanskyi, M.Storozhenko, V.Krasovskyi, M.Pareyko, J. Superhard Mater., 99, 39 (2017). https://doi.org/10.3103/S1063457617020046

4. N.A.Klinskaya-Rudenskaya, B.P.Kuz'min, Fiz. Khim. Obrab. Mater., 55, 1 (1996).

5. A.P.Umanskyi, A.E.Terentiev, M.S.Storozhenko, A.A.Bondarenko, Aviats.-Kosmich. Tekh. Tekhnol., 50, 97 (2012).

6. T.S.Cherepova, G.P.Dmitrieva, V.K.Nosenko, Metaloznav. Obr. Met., 3, 36 (2015).

7. T.S.Cherepova, H.P.Dmytrieva, O.I.Dukhota, M.V.Kindrachuk, Mater.Sci., 52, 173 (2016). https://doi.org/10.1007/s11003-016-9940-2

8. O.Umanskyi, M.Storozhenko, V.Krasovskyi et al., J. Alloys Compd., 15, 778 (2019). https://doi.org/10.1016/j.jallcom.2018.11.102

9. A.E.Terentiev, V.P.Krasovskyi, M.Storozhenko et al., Adgez. Raspl. Paika Mater., 79, 45 (2012).

10. A.Panasyuk, O.Umanskyi, M.Storozhenko, V.Akopyan, Key Eng. Mater., 9, 527 (2013). https://doi.org/10.4028/www.scientific.net/KEM.527.9

11. G.V.Samsonov, T.I.Serebyakova, V.N.Neronov, Borides: A Handbook, Atomizdat, Moscow (1975) [in Russian].

12. G.V.Samsonov, V.S.Upadkhaya, V.S.Neshpor, Physical Materials Science of Carbides, Naukova Dumka, Kyiv (1974) [in Russian].

13. A.A.Ivan'ko, Hardness, Naukova Dumka, Kyiv (1968) [in Russian].

14. S.A.Klimenko, V.V.Kolomiets, M.L.Kheifets et al., Machining of Components with Coatings, Bakul Institute of Superhard Materials, Kyiv (2011) [in Russian]

.

Current number: