Funct. Mater. 2019; 26 (3): 514-518.

doi:https://doi.org/10.15407/fm26.03.514

Influence of nanomodification on structure formation of multicomponent nickel alloys

N.E.Kalinina1, D.B.Glushkova2, A.I.Voronkov2, V.T.Kalinin3

1O.Honchar Dnipro National University, Dnipro, Ukraine 2Kharkiv National Automobile and Highway University, Ukraine 3The National Metallurgical Academy of Ukraine, Dnipro, Ukraine

Abstract: 

The paper presents the results of experiments on nanomodification of GS3 high-temperature nickel alloy used for the manufacture of gas-turbine engine blades. The choice of modifier for the experimental alloy has been justified; a method for obtaining a nano-modifier by plasma-chemical synthesis was suggested; the specific surface area of titanium carbide nanoparticles was calculated, equal to 12.5 m2/g. The optimal amount of nano-modifier introduced into the melt was determined in nickel alloys. As a result of nano-modification, grain refinement was achieved by 5-8 times. A mechanism for the process of structure formation during the modification of nickel alloys was proposed.

Keywords: 
multicomponent nickel alloys, nano-modifier, plasma-chemical synthesis, structure, micro X-ray spectral analysis.
References: 

1. V.O.Boguslaev, O.Ya.Kachan, N.E.Kalinina et al., Aerospace Materials and Technologies, Motor Sich, Zaporozhye (2009).

2. S.V.Gaiduk, O.V.Gnatenko, A.G.Andreenko, V.V.Naumik, New Materials and Technology in the Metal Industry and Machine Manufacturing, VIP.2, 37 (2012).

3. E.I.Tsivirko, A.A.Pedash, Vestnik Engine Industry, No.1, 99 (2010).

4. P.D.Zhemanyuk, A.A.Pedash, E.I.Tsivirko, A.F.Pedash, Vestnik Engine Industry. 1, 75 (2013).

5. N.E.Kalinina, D.B.Hlushkova, O.D.Hrinchenko et al., Probl. Atom. Sci. Techn., 2, 151 (2019).

6. N.E.Kalinin, G.M.Nikiforchin, O.V.Kalinin et al., Structure, Properties and Use Structures of Nanomaterials Prostr-M, Lviv (2017).

7. B.M.Baloyan, A.G.Kolmakov, M.I.Alymov, A.M.Moles. Nanomaterials, Ugrina, Moscow (2007) [in Russian].

8. Yu.I.Petrov, E.A.Shafranovsky, Izv. RAS. Ser. Phys., 8, 1548 (2006).

9. H.H.Nersisyan, J.H.Lee, C.W.Wok, J. Mater. Res., 11, 2859 (2002). https://doi.org/10.1557/JMR.2002.0415

10. N.D.Sakhnenko, M.V.Ved, Yu.K.Hapon, T.A.Nenastina, Zh. Prikladnoi Khimii, 88. 1941 (2015). https://doi.org/10.1134/S1070427215012006X

11. V.T.Kalinin, V.A.Fedotov, Systems Techn., 1, 67 (2002).

12. V.I.Bolshakov, V.E.Vaganov, Bull. Pridniprovsky State Acad. Building and Architecture, 10, 34 (2014).

13. V.I.Bolshakov, L.I.Glushinsky, Structural Theory of Bardening Structural Steels and Other Materials, Svidler, Dnipro (2010).

14. N.E.Kalinina, A.E.Kalinovskaya, B.T.Kalinin et al., Modern Problems of Condensed Matter Physics, Proc. of the Third Intern. Conf., Kyiv (2012), p.205.

Current number: