Вы здесь

Funct. Mater. 2019; 26 (3): 534-540.


Corrosion properties of galvanic Fe-Mo(W), Fe-Mo-W coatings

M.V.Ved1, N.D.Sakhnenko1, A.V.Karakurkchi1, K.D.Pershina2, I.Y.Yermolenko1

1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., 61002 Kharkiv, Ukraine
2V.Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences of Ukraine, 32/34 Academica Palladina Ave., 03142 Kyiv, Ukraine


The methods of analysis of polarization dependences, the electrode impedance spectroscopy and gravimetry were used for the investigation of the corrosion properties of galvanic binary Fe-Mo(W) and ternary Fe-Mo-W coatings in the media of a different acidity. It was shown that the corrosion rate of Fe-Mo-W and Fe-Mo(W) alloys is decreased with an increase in the pH of the solutions and with the enrichment of the alloys by doping refractory components. The dependence of the control of corrosion process on the composition of electrolytic alloys has been specified. It was established that the corrosion resistance of binary alloys is 1.1 to 1.5 orders of magnitude higher in comparison with the parameters of substrate materials, in particular the mild steel. The corrosion resistance indices for the coatings applied using the ternary Fe-Mo-W alloys substantially prevail over those for mild steel, individual metals and binary Fe-Mo and Fe-W coatings. The corrosion resistance of Fe-Mo-W system is equal to 8300 Ohm·cm2 and it is conditioned by the formation of the two-component layer film consisting of molybdenum oxides and tungsten oxides. Using the data of gravimetric investigations we constructed the diagrams "the corrosion depth index kh, mm/year - the composition" for the Fe-Mo-W system that allow us to define the metal content ratio for Fe-Mo(W), Fe-Mo-W alloys in order to provide an appropriate corrosion resistance depending on service conditions.

iron, molybdenum, tungsten, electrodeposition, the corrosion resistance.

1. N.I.Tsyntsaru, S.S.Belevskii, G.F.Volodina et al., Surf. Eng. Appl. Electrochem., 43, 312 (2007). https://doi.org/10.3103/S106837550705002X

2. N.Tsyntsaru, A.Dikusar, H.Cesiulis et al., Powder Metallurgy and Metal Ceramics, 48), 419 (2009). https://doi.org/10.1007/s11106-009-9150-7

3. M.Spasojevic, N.Cirovic, L.Ribic-Zelenovic et al., J. Electrochem. Soc., 161, D463 (2014). https://doi.org/10.1149/2.0041410jes

4. I.Yu.Yermolenko, M.V.Ved', N.D.Sakhnenko et al., Functional Materials, 25, 1 (2018).

5. E.Vernickaite, Z.Antar, A.Nicolenco et al., in: Proc. 8th Intern. Sci. Conf. "BALTTRIB 2015". Published on-line 25 February 2016 by Aleksandras Stulginskis University, Kaunas, Lithuania (2016). p.162.

6. N.Tsyntsaru, J.Bobanova, X.Ye, H.Cesiulis et al., Surf. Coat. Technol., 203, 3136 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.041

7. V.Kublanovsky, O.Bersirova, A. Dikusar et al., Physicochem. Mechan. Mater., 7, 308 (2008).

8. E.P.Barbano, F.S.Da Silva, I.A.Carlos. E.Valles, J. Alloys Copmp., 695, 319 (2017). https://doi.org/10.1016/j.jallcom.2016.10.208

9. V.V.Kuznetsov, K.E.Golyanin, T.V.Pshenichkina, Zh. Elektrokhimii, 48, 1107 (2012). https://doi.org/10.1134/S1023193512110109

10. H.Feng-jiao, L.Jing-tian, L.Xin, H.Yu-ning, Trans. Nonferrous Met. Soc. China, 14, 901 (2004).

11. P.Esther, J.Kennady, P.Saravanan, T.Venkataehalam, J. Non-Oxide Glasses, 1, 301 (2009).

12. N.Paulo, S.Casciano, R.L.Benevides et al., Correia Int. J. Electrochem. Sci., 9, 4413 (2014).

13. M.E.Orazem, B.Tribollet, Electrochemical Impedance Spectroscopy, J. Willey Inc., New York, (2008). https://doi.org/10.1002/9780470381588

14. I.Yu.Yermolenko, M.V.Ved', A.V.Karakurkchi et al., Iss. Chem. Chem. Technol., 2, 4 (2017).

15. G.Yar-Mukhamedova, M.Ved', N.Sakhnenko et al., Appl. Surf. Sci., 383, 346 (2016). DOI: 10.1016/j.apsusc.2016.04.04 6 https://doi.org/10.1016/j.apsusc.2016.04.046

16. G.Sh.Yar-Mukhamedova, N.D.Sakhnenko, M.V.Ved' et al., IOP Conf. Ser.: Mater. Sci. Engin., 213, 6 (2017). https://doi.org/10.1088/1757-899X/213/1/012019

17. S.I.Tanase, D.P.Tanase, M.Dobromira, V.Georgescu, Appl. Surf. Sci., 257, 10903 (2011). https://doi.org/10.1016/j.apsusc.2011.07.139

18. M.V.Ved, M.D.Sakhnenko, H.V.Karakurkchi et al., Mater. Sci., 51, 701 (2016). https://doi.org/10.1007/s11003-016-9893-5

19. Impedance Spectroscopy. Theory, Experiment and Applicatons, ed, by E,Barsoukov, Wiley, N.Y. (2005).

20. A.V.Karakurkchi, M.V.Ved', I.Yu.Ermolenko, N.D.Sakhnenko, Surf. Eng. Appl. Electrochem., 52, 43 (2016). https://doi.org/10.3103/S1068375516010087

21. A.V.Karakurkchi, M.V.Ved', N.D.Sakhnenko et al., Functional Materials, 22, 181 (2015). https://doi.org/10.15407/fm22.02.181

Current number: