Funct. Mater. 2019; 26 (3): 603-608.
Crystallization of complex phosphates based on titanium and bivalent or trivalent metals from cesium and rubidium phosphate self-fluxes
1T.Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine
2O.Bogomolets National Medical University, 13 T.Shevchenko blvd, 01601 Kyiv, Ukraine
The particularities of phase formation in the self-flux Cs2O-P2O5-TiO2 system were investigated at molar ratios of Cs/P = 0.9-1.2, and Ti/P = 0.3 over a temperature range of 1000-550 °C. The formation conditions of the complex phosphates Cs2TiOP2O7 (at Cs/P = 1.0) and CsTiOPO4 (at Cs/P = 1.2) were established. It was found that the addition of bi- and trivalent metals oxides into the self-flux MI2O-P2O5-TiO2-MIII2O3 (MIIO) (MI - Cs, Cs/Rb, MII - Co, Ni, MIII - Fe, Mn) system (at molar ratios of MI/P = 1.0 and 1.2, Ti/P = 0.3, Ti/Mn = 1.0 and Cs/Rb = 1.0) caused the formation of MI1+2xTi1-xMIIxOPO4 and MI1+xTi1-xMIIIxOPO4 (MI - Cs, Cs/Rb) (0.3≤e;0.5) phosphates which belong to a cubic system, space group Fd-3m. The obtained phosphates were characterized by the powder X-ray diffraction, FTIR spectroscopy, TG/DTA and elemental analysis.
1. H.El-Shinawi, A.Regoutz, D.J.Payne et al., J. Mater. Chem. A, 6, 5296 (2018). https://doi.org/10.1039/C7TA08715B
2. M.Kotobuki, M.Koishi, Y.Kato, Ionics, 19, 1945 (2013). https://doi.org/10.1007/s11581-013-1000-4
3. K.Arbi, W.Bucheli, R.Jimenez et al., J. Eur. Ceram. Soc. 35, 1477 (2015)
4. K.Trad, D.Carlier, L.Croguennec et al., Inorg. Chem., 49, 10378 (2010). https://doi.org/10.1021/ic101130m
5. J.Kim, H.Kim, S.Lee et al., J. Mater. Chem. A, 5, 22334 (2017). https://doi.org/10.1039/C7TA06693G
6. D.Liu, G.Tayhas, R.Palmore, ACS Sustainable Chem. Eng., 5, 5766 (2017). https://doi.org/10.1021/acssuschemeng.7b00371
7. J.Gao, P.Zhao, K.Feng, Chem. Mater., 29, 940 (2017). https://doi.org/10.1021/acs.chemmater.6b05308
8. Y.Liu, H.Wang, D.Lin et al., Energy Environ. Sci., 8, 1719 (2012). https://doi.org/10.1039/C5EE01290B
9. Y.Zhang, C.Zhao, X.Dai et al., J. Power Sources, 243, 908 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.041
10. O.Chunmei, M.Shuai, R.Yang et al., J. Rare Earth., 30, 637 (2012). https://doi.org/10.1016/S1002-0721(12)60104-5
11. T.Chan, R.Liu, I.Baginskiy, Chem. Mater., 20, 1215 (2008). https://doi.org/10.1021/cm7028867
12. S.W.Kim, T.Hasegawa, T.Ishigaki et al., Solid State Lett., 2, 49 (2013). https://doi.org/10.1149/2.004312ssl
13. W.Tang, D.Chen, H.Yang, Appl. Phys. A, 103, 263 (2011). https://doi.org/10.1007/s00339-011-6362-8
14. D.Haranath, S.Mishra, S.Yadav et al., Appl. Phys. Lett., 101, 221905 (2012). https://doi.org/10.1063/1.4768214
15. S.P.Kumar, B.Gopal, J. Alloys Compd., 615, 419 (2014). https://doi.org/10.1016/j.jallcom.2014.06.192
16. S.Krimi, A.El Jazouli, A.Lachgar, Acta Cryst., A63, s291 (2007). https://doi.org/10.1107/S0108767307093397
17. S.Krimi, A.El Jazouli, A.Lachgar, Acta Cryst., A65, s199 (2009). https://doi.org/10.1107/S0108767309095877
18. F.E.Mouahid, M.Bettach, M.Zahir et al., J. Mater. Chem., No.10, 2748 (2000).
19. F.E.Mouahid, M.Zahir, P.Maldonado-Manso et al., J. Mater. Chem., No.11, 3258 (2001). https://doi.org/10.1039/b102918p
20. I.V.Ogorodnyk, I.V.Zatovsky, N.S.Slobodyanik et al., J. Solid State Chem., 179, 3461 (2006). https://doi.org/10.1016/j.jssc.2006.07.015
21. D.Zhao, H.Zhang, S.-P.Huang et al., J. Alloys Compd., 477, 795 (2009). https://doi.org/10.1016/j.jallcom.2008.10.124
22. J.C.M.Gustafsson, S.T.Norberg, G.Svensson, Acta Crystallogr. Sect. ED, E62, i160 (2006). https://doi.org/10.1107/S1600536806021635
23. J.C.M.Gustafsson, S.T.Norberg, G.Svensson et al., Acta Crystallogr. Sect., C61, i9 (2005). https://doi.org/10.1107/S0108767305083261
24. J.J.Carvajal, A.Aznar, R.Sole et al., Chem. Mater., 15, 204 (2003). https://doi.org/10.1021/cm020806t
25. E.A.Asabinaa, V.I.Pet'kova, E.R.Gobechiya et al., Zh. Neorg. Khimii, 53, 40 (2008).
26. N.Yu.Strutynska, M.A.Bondarenko, I.V.Ogorodnyk et al., Cryst. Res. Technol., 50, 549 (2015). https://doi.org/10.1002/crat.201500050
27. N.Y.Strutynska, M.A.Bondarenko, I.V.Ogorodnyk et al., Acta Crystallogr. Sect. E, 71, 251 (2015). https://doi.org/10.1107/S2056989015001826
28. I.V.Zatovsky, N.Y.Strutynska, V.N.Baumer et al., J. Solid State Chem., 184, 705 (2011). https://doi.org/10.1016/j.jssc.2011.01.042
29. I.V.Zatovsky, V.N.Baumer, N.Y.Strutynska et al., Acta Crystallogr., Sect. C, 66, i71 (2010). https://doi.org/10.1107/S0108270110017695
30. I.V.Zatovsky, N.Yu.Strutynska, V.N.Baumer et al., Acta Crystallogr., Sect. E, 62, i263 (2006). https://doi.org/10.1107/S160053680604832X
31. N.Yu.Strutynska, V.N.Baumer, I.V.Zatovsky et al., Acta Crystallogr., Sect. C, 66, i39 (2010). https://doi.org/10.1107/S1600536810013358
32. I.V.Zatovsky, N.Y.Strutynska, Y.A.Hizhnyi et al., Dalton Trans., 47, 2274 (2018). https://doi.org/10.1039/C7DT04505K
33. M.Kunz, R.Dinnebier, L.K.McCarron et al., J. Solid State Chem., 120, 299 (1995). https://doi.org/10.1006/jssc.1995.1412
34. R.D.Shannon, Acta Crystallogr., Sect. A, A32, 751 (1976). https://doi.org/10.1107/S0567739476001551
35. N.Strutynska, M.Bondarenko, N.Slobodyanik et al., Cryst. Res. Technol., 51, 627 (2016). https://doi.org/10.1002/crat.201600207
36. N.Y.Strutynska, M.A.Bondarenko, I.V.Zatovsky et al., Functional Materials, 22, 269 (2015). https://doi.org/10.15407/fm22.02.269