Вы здесь

Funct. Mater. 2019; 26 (4): 664-672.

doi:https://doi.org/10.15407/fm26.04.664

Inclusion complexes of melatonin and randomly methylated β-cyclodextrin: spectroscopic study

G.V.Grygorova, S.L.Yefimova, V.K.Klochkov, L.V.Budyanska, D.S.Sofronov, O.V.Kolesnikova, Yu.V.Malyukin

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

In this research host-guest complex formation of melatonin (MT) with randomly methylated β-cyclodextrin (RMβCD) in aqueous solutions and in solid state has been investigated by differential scanning calorimetry, Fourier transform infrared spectroscopy analysis, fluorescence and ultraviolet-visible absorption spectroscopy and phase solubility measurements. The phase solubility data indicate a linear increase in the solubility of MT with RMβCD pointing to the Higuchi's AL-type phase solubility profile. According to the continuous variation Job's method applied to spectroscopy measurements, a 1:1 stoichiometry has been proposed for the complex formed. Stability constants for the RMβCD/MT inclusion complexes have been calculated by fluorescence spectroscopy using the Benesi-Hildebrand method, while the thermodynamic parameters have been estimated using the Van't Hoff equation. The data obtained indicate that the binding process of RMβCD with MT is exothermic and enthalpy-driven. The superiority of the RMβCD/MT inclusion complex in photostability has been revealed.

Keywords: 
randomly methylated β-cyclodextrin, melatonin, inclusion complexes, stability constant, complexation thermodynamics.
References: 

1. B.Poeggeler, S.Saarela, R.J.Reiter et al., Ann. N. Y. Acad. Sci., 738, 419 (1994). https://doi.org/10.1111/j.1749-6632.1994.tb21831.x

2. M.Karbownik, R.J.Reiter, J.Cabrera, J.J.Garcia, Mutat. Res., 474, 87 (2001). https://doi.org/10.1016/S0027-5107(00)00164-0

3. R.Hardeland, Endocrine, 27, 119 (2005). https://doi.org/10.1385/ENDO:27:2:119

4. B.Farhood, N.H.Goradel, K.Mortezaee et al., J. Cell. Physiol., 234, 5613 (2019). https://doi.org/10.1002/jcp.27391

5. D.E.Blask, Sleep Med. Rev., 13, 257 (2009). https://doi.org/10.1016/j.smrv.2008.07.007

6. Z.Feng, J.T.Zhang, Free Radic. Biol. Med., 37, 1790 (2004). https://doi.org/10.1016/j.freeradbiomed.2004.08.023

7. D.E.Blask, L.A.Sauer, R.T.Dauchy et al., Cancer Res., 59, 4693 (1999).

8. A.Cutando, J.Aneiros-Fernandez, J.Aneiros-Cachaza, S.Arias-Santiago, J. Oral Pathol. Med., 40, 593 (2011). https://doi.org/10.1111/j.1600-0714.2010.01002.x

9. Y.Cheng, L.Cai, P.Jiang et al., Eur. J. Pharmacol., 715, 219 (2013). https://doi.org/10.1016/j.ejphar.2013.05.017

10. R.J.Reiter, S.A.Rosales-Corral, D.-X.Tan et al., Int. J. Mol. Sci., 18, 843 (2017). https://doi.org/10.3390/ijms18040843

11. M.M.Leon-Blanco, J.M.Guerrero, R.J.Reiter et al., J. Pineal Res., 35, 204 (2003). https://doi.org/10.1034/j.1600-079X.2003.00077.x

12. D.C.Altindal, M.Gumusderelioglu, J. Drug Deliv. Sci. Technol., 52, 586 (2019). https://doi.org/10.1016/j.jddst.2019.05.027

13. A.Tarocco, N.Caroccia, G.Morciano et al., Cell Death and Disease, 10, 317 (2019). https://doi.org/10.1038/s41419-019-1556-7

14. R.J.Babu, P.Dayal, M.Singh, Drug Deliv., 15, 381 (2008). https://doi.org/10.1080/10717540802006922

15. A.Kumar, S.P.Agarwal, R.Khanna, Pharmazie, 58, 642 (2003).

16. E.B.Gurler, N.M.Ergul, B.Ozbek et al., Mater. Sci. Eng. C, 100, 798 (2019). https://doi.org/10.1016/j.msec.2019.03.051

17. D.Massella, F.Leone, R.Peila et al., J. Funct. Biomater., 9 (2018). https://doi.org/10.3390/jfb9010001

18. Q.Ma, J.Yang, Xu Huang et al., Express, (2017).

19. A.Priprem, Ch.Nukulkit, N.P.Johns, Ther. Deliv., 9, 343 (2018). https://doi.org/10.4155/tde-2018-0001

20. E.E.Uchendu, E.R.J.Keller, Cryo-Letters, 37, 77 (2016).

21. G.Kocic, K.Tomovic, H.Kocic et al., RSC Adv., 7, 1271 (2017)  https://doi.org/10.1039/C6RA24741E

22. A.M.Khattabi, W.H.Talib, D.A.Alqdeimat, Saudi Pharm. J., 26, 1022 (2018). https://doi.org/10.1016/j.jsps.2018.05.010

23. A.Zafra-Roldan, S.Corona-Avendano, R.Montes-Sanchez et al., Spectrochim. Acta A, Mol. Biomol. Spectrosc., 190, 442 (2018). https://doi.org/10.1016/j.saa.2017.09.042

24. M.Vlachou, M.Papamichael, A.Siamidi et al., Int. J. Mol. Sci., 18, 1641 (2017). https://doi.org/10.3390/ijms18081641

25. R.Arun, K.C.K.Ashok, V.V.N.S.S.Sravanthi, Sci. Pharm., 76, 567 (2008). https://doi.org/10.3797/scipharm.0808-05

26. T.Higuchi, K.A.Connors, Phase Solubility Techniques, Interscience, New York (1965).

27. P.Job, Ann. Chim., 9, 113 (1928).

28. J.S.Renny, L.L.Tomasevich, E.H.Tallmadge, D.B.Collum, Angew. Chem. Int. Ed., 52, 11998 (2013). https://doi.org/10.1002/anie.201304157 H

29. H.Bouzit, M.Stiti, M.Abdaoui, J. Incl. Phenom. Macrocycl. Chem., 86, 121 (2016). https://doi.org/10.1007/s10847-016-0647-7

30. H.A.Benesi, J.H.Hildebrand, J. Am. Chem. Soc., 89, 2703 (1949). https://doi.org/10.1021/ja01176a030

31. S.Hamai, Bull. Chem. Soc. Jpn., 55, 2721 (1982). https://doi.org/10.1246/bcsj.55.2721 H

32. D.Bongiorno, L.Ceraulo, A.Mele et al., Carbohydr. Res., 337, 743 (2002). https://doi.org/10.1016/S0008-6215(02)00049-6

33. Y.L.Loukas, V.Vraka, G.Gregoridias, J. Pharm. Biomed. Anal., 16, 263 (1997). https://doi.org/10.1016/S0731-7085(97)00029-0

34. S.Tommasini, D.Raneri, R.Ficarra et al., J. Pharm. Biomed. Anal., 35, 379 (2004). https://doi.org/10.1016/S0731-7085(03)00647-2

35. P.Padhan, A.Sethy, P.K.Behera, J. Photochem. Photobiol. A, 337, 165 (2017). https://doi.org/10.1016/j.jphotochem.2017.01.015

36. A.M.Stalcup, S.S.Chang, D.W.Armstrong, J. Pitha, J. Chromatogr., 513, 181 (1990). https://doi.org/10.1016/S0021-9673(01)89435-8

37. R.Singh, N.Bharti, J.Madan, S.N.Hiremath, J. Pharm. Sci Technol., 2, 171 (2010).

38. K.Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, John Wiley & Sons, Inc., New York (1997).

39. T.Loftsson, M.E.Brewster, J. Pharm. Sci., 85, 1017 (1996). https://doi.org/10.1021/js950534b

40. L.Hu, H.Zhang, W.Song et al., Carbohyd. Polym., 90, 1719 (2012). https://doi.org/10.1016/j.carbpol.2012.07.057

41. T.Karpkird, R.Khunsakorn, C.Noptheeranuphap, S.Midpanon, J. Incl. Phenom. Macrocycl. Chem., 91, 37 (2018). https://doi.org/10.1007/s10847-018-0796-y

Current number: