Вы здесь

Funct. Mater. 2019; 26 (4): 695-702.

doi:https://doi.org/10.15407/fm26.04.695

Influence of manufacturing conditions of detectors based on crystals of SrI2:Eu on their scintillation characteristics

V.A.Tarasov1, T.E.Gorbacheva1, N.V.Rebrova1, A.A.Bobovnikov1, E.P.Galenin1, L.A.Andryushchenko2, S.D.Svetlichna2

1Institute of Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2National University of Civil Protection of Ukraine, 94 Chernyshevskaya Str., 61023 Kharkiv, Ukraine

Abstract: 

The factors determining the characteristics of the SrI2:Eu scintillator during processing and packing stages are considered. Using experimental and computer modeling, we selected options for processing the surfaces of scintillators, providing an improvement in their scintillation characteristics. It is shown that the method of processing the surface of crystal Sr2:Eu size of ø21x5 mm and ø21x10 mm grown by method of synthesis of raw materials components, combined with the diffuse reflector Tetratex provides improved energy resolution of 3.65 % and 3.87 % respectively at 662 keV.

Keywords: 
Scintillator, light output, energy resolution.
References: 

1. V.V.Babenko, A.G.Isaev, A.S.Kazimirov, I.P.Stolyarevsky, Nuclear and Radiation Technologies, 4, 3 (2004).

2. Yingying Zhang, Changkai Li, Dongyan Liu et al., Appl. Radiation and Isotopes, 98, 44 (2015).

3. W.W.Moses, Nucl. Instr. Meth., A 487, 123 (2002).

4. V.A.Tarasov, Scintillation Materials. Inzheria, Devices, Application, ISMA, Kharkov (2009) [in Russian].

5. S.Andrukhovich, N.Antovich, N.Svrkota, D.V.Silk, in: Proc. of VI Congress of Physicists of Belarus, Minsk (2017), p.39.

6. P.Belli, R.Bernabein, R.Cerulli et al., Nucl. Instrum. Meth. Phys. Res., A 670, 10 (2012).

7. US Patent, 201002687 (2010).

8. US Patent, 20170219721 (2017).

9. J.Glodo, EV van Loef, N.J.Cherepy et al., IEEE Nucl. Sci. 57, 1228 (2010).

10. N.J.Cherepy, B.W.Sturm, O.B,Drury et al., SPIE, 74490, 74490F (2009), DOI:10.1117/12.830016.

11. V.Edgar, E.V.van Loef, IEEE Trans. Nucl. Sci., 56, 869 (2009).

12. E.Galenin, V.Romanchuk, E.Tsoi et al., ISMART, Minsk, Belarus, 53 (2014).

13. N.J.Cherepy, G.Hull, A.D.Drobshoff et al., Appl. Phys. Lett., 42, 137 (2008).

14. C.M.Wilson, EVD van Loef, J.Glodo et al., Proc. SPIE, 7079, 707917.1 (2008).

15. N.J.Cherepy, S.A.Payne, S.J.Asztalos et al., IEEE Nucl. Sci., 56, 873 (2009).

16. B.W.Sturm, N.J.Cherepy, O.B.Drury et al., Nucl. Instrum. Meth. Phys. Res., A 652, 242 (2011).

17. L.N.Trefilova, A.M.Kudin, L.V.Kovaleva et al., Rad Meas., 33, 687 (2001).

18. A.Gektin, S.V.Asyukov, E.Galenin et al., Functional Materials, 23, 476 (2016).

19. L.A.Andryushenko, B.V.Grinev, A.M.Litichevskii, L.V.Udovichenko, Instrum. Exp. Tech., 1, 67 (1997).

20. L.A.Andryuschcenko, B.V.Grinev, V.A.Tarasov, Instrum. Exp. Tech., 54, 603 (2011).

21. S.E.Derenzo, Properties of Scintillators. http://scintillator.Ibl.gov/

22. R.Hawrami, C.Himes, I.Abselem et al., Proc. of SPIE, 8507, 850716-1 (2012).

23. UA Patent 80507.

24. N.Rebrova, A.Grippa, A. Pushak et al., Nucl. Instrum. Meth. Phys. Res., A, 927, 214 (2019).

25. L.A Andryuschcenko, B.V.Grinyov, A.M.Kudin et al., Functional Materials, 13, 534 (2006) .

26. Yu.T.Vydai, V.A.Tarasov, A.M.Kudin, L.A.Andryuschcenko, Instrum. Exp. Tech., 13, 534 (2006).

27. Nanoprom. Superfinishnay Obrobka Nemetal-lcheskith Detalej. htpp://www.Nanoprom.pro.

28. V.A.Tarasov, L.A.Andryuschcenko, L.N.Trefilova et al., Functional Materials, 25, 445 (2018).

29. A.V.Shkoropatenko, A.M.Kudin, L.A.Andruschenko et al., Journal of Surface Physics and Engineering (PSE), 13, 175 (2015).

Current number: