Вы здесь

Funct. Mater. 2019; 26 (4): 710-717.

doi:https://doi.org/10.15407/fm26.04.710

Ultrasound-assisted formation of composites of carbon nanotubes with nanosilver

O.A.Boryak1, V.S.Shelkovsky1, M.V.Kosevich1, V.V.Orlov1, O.M.Vovk2, V.A.Karachevtsev1

1B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine
2State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

In the present work a method of manufacturing of a nanocomposite of single-walled carbon nanotubes with silver nanoparticles (SWNT-AgNP) by ultrasound treatment of SWNT and AgNO3 mixture in aqueous medium is tested, anticipating the advantage of avoiding reducing chemicals employment. Transmission electron microscopy inspection of the objects obtained showed the presence of the nanotubes or relatively small SWNT bundles with inclusion of AgNPs of 5-20 nm in diameter. Laser desorption/ionization mass spectrometric analysis revealed the sputtering of small silver clusters Agn (n = 2, 3, 5, 7, 9) from the nanotubes surface, which may serve as nucleus for the nanoparticles growth. Possible mechanisms of the SWNT-AgNPs composite formation under ultrasound treatment due to cavitation-induced processes and sonochemical reactions are discussed.

Keywords: 
nanocomposites, single-wall carbon nanotubes, silver nanoclusters, ultrasound treatment, transmission electron microscopy, mass spectrometry, cavitation.
References: 

1. C.H.Xue, R.J.Zhou, M.M.Shi et al., Nanotechnology, 19, 325606 (2008).

2. J.Lin, C.He, Y.Zhao et al., Sens. Actuators. B, 137, 768 (2009).

3. J.Cveticanin, A.Krkljes, Z.Kacarevic-Popovic et al., Appl. Surf. Sci., 256, 7048 (2010).

4. B.Xue, P.Chen, Q.Hong et al., J. Mater. Chem., 11, 2378 (2001).

5. A.Zamudio, A.L.Elias, J.A.Rodriguez-Manzo et al., Small, 2, 346 (2006).

6. Y.Liu, J.Tang, X.Chen et al., Carbon, 44, 381 (2006).

7. N.X.Dinh, N.V.Quy, T.Q.Huy et al., J. Nanomater., 2015, 814379 (2015).

8. Y.Liu, Y.Hu, R.Chen et al., Curr. Nanosci., 12, 411 (2016).

9. S.Sahoo, S.Husale, S.Karna et al., J. Am. Chem. Soc., 133, 4005 (2011).

10. M.Aflori, M.Butnaru, B.-M.Tihauan et al., Nanomaterials, 9, 428 (2019).

11. A.Krainoi, C.Kummerlowe, N.Vennemann et al., J. Appl. Polym. Sci., 136, 47281 (2019).

12. W.M.Daoush, S.H.Hong, J. Exp. Nanosci., 8, 742 (2013).

13. V.K.Rangari, G.M.Mohammad, S.Jeelani et al., Nanotechnology, 21, 095102 (2010).

14. J.H.Bang, K.S.Suslick, Adv. Mater., 22, 1039 (2010).

15. H.Xu, B.W.Zeiger, K.S.Suslick, Chem. Soc. Rev., 42, 2555 (2013).

16. J.J.Hinman, K.S.Suslick, Top. Curr. Chem., 375, 12 (2017).

17. A.Gedanken, Ultrason. Sonochem., 11, 47 (2004).

18. S.Manickam, Cavitation: A Novel Energy-efficient Technique for the Generation of Nanomaterials, ed. by S.Manickam, M.Ashokkumar, Boca Raton: Pan Stanford Publishing (2014).

19. V.V.Chagovets, M.V.Kosevich, S.G.Stepanian et al., J. Phys. Chem. C, 116, 20579 (2012).

20. V.A.Karachevtsev, A.Yu.Glamazda, U.Dettlaff-Weglikowska et al., in: Spectroscopy of Emerging Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 165, Springer, Dordrecht (2004), p.139.

21. M.V.Kosevich, V.V.Chagovets, O.V.Severinovskaya et al., J. Anal. Chem., 67, 987 (2012).

22. C.Staudt, R.Heinrich, A.Wucher, Nucl. Instrum. Meth. Phys. Res. B, 164-165, 677 (2000).

23. R.T.La Porte, D.S.Moreno, M.C.Striano et al., Laser Chem., 20, 23 (2002).

24. L.Hua, J.Chen, L.Ge et al., J. Nanopart. Res., 9, 1133 (2007).

25. V.Prysiazhnyi, F.Dycka, J.Kratochvil et al., J. Vac. Sci. Technol. B, 37, 012906 (2019).

26. M.-C.Wu, C.-L.Li, C.-K.Hu et al., Phys. Rev. B, 74, 125424 (2006).

27. R.Salkar, P.Jeevandam, S.T.Aruna et al., J. Mater. Chem., 9, 1333 (1999).

28. V.-S.Manoiu, A.Aloman, U.P.B. Sci. Bull., Ser. B, 72, 179 (2010).

29. L.Dharmarathne, M.Ashokkumar, F.Grieser, J. Phys. Chem. A, 117, 2409 (2013).

30. M.Gutierrez, A.Henglein, J.K.Dohrmann, J. Phys. Chem., 91, 6687 (1987).

31. M.Kohno, T.Mokudai, T.Ozawa et al., J. Clin. Biochem. Nutr.. 49, 96 (2011).

32. A.J.Slifka, G.Singh, D.S.Lauria et al., Appl. Phys. Express, 3, 065103 (2010).

33. P.Xiao, W.J.Li, R.Du, IEEE Trans. Nanotechnol., 10, 520 (2011).

34. Y.Y.Huang, T.P.J.Knowles, E.M.Terentjev, Adv. Mater., 21, 3945 (2009).

35. G.Pagania, M.J.Greenc, P.Poulind et al., Proc. Natl. Acad. Sci. USA, 109, 11599 (2012).

36. S.K.Choi, K.-Y.Chun, S.-B.Lee, Diamond Relat. Mater., 18, 637 (2009).

37. D.R.Lide, CRC Handbook of Chemistry and Physics, 88th ed. by D.R.Lide, Boca Raton:Taylor & Francis Group (2008).

38. V.P.Skripov, V.P.Koverda, V.N.Skokov, Phys. Status Solidi, 66, 109 (1981).

39. N.H.Kim, J.-Y.Kim J.-Y, K.J.Ihn, J. Nanosci. Nanotechnol., 7, 3805 (2007).

40. O.Supponen, D.Obreschkow, P.Kobel et al., J. Phys.:Conf. Ser., 656, 012038 (2015).

41. I.Perelshtein, G.Applerot, N.Perkas et al., Nanotechnology, 19, 245705 (2008).

42. N.Perkas, G.Amirian, G.Applerot et al., Nanotechnology, 19, 435604 (2008).

43. R.Gottesman, S.Shukla, N.Perkas et al., Langmuir, 27, 720 (2011).

Current number: