Вы здесь

Funct. Mater. 2019; 26 (4): 710-717.

doi:https://doi.org/10.15407/fm26.04.710

Ultrasound-assisted formation of composites of carbon nanotubes with nanosilver

O.A.Boryak1, V.S.Shelkovsky1, M.V.Kosevich1, V.V.Orlov1, O.M.Vovk2, V.A.Karachevtsev1

1B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine
2State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

In the present work a method of manufacturing of a nanocomposite of single-walled carbon nanotubes with silver nanoparticles (SWNT-AgNP) by ultrasound treatment of SWNT and AgNO3 mixture in aqueous medium is tested, anticipating the advantage of avoiding reducing chemicals employment. Transmission electron microscopy inspection of the objects obtained showed the presence of the nanotubes or relatively small SWNT bundles with inclusion of AgNPs of 5-20 nm in diameter. Laser desorption/ionization mass spectrometric analysis revealed the sputtering of small silver clusters Agn (n = 2, 3, 5, 7, 9) from the nanotubes surface, which may serve as nucleus for the nanoparticles growth. Possible mechanisms of the SWNT-AgNPs composite formation under ultrasound treatment due to cavitation-induced processes and sonochemical reactions are discussed.

Keywords: 
nanocomposites, single-wall carbon nanotubes, silver nanoclusters, ultrasound treatment, transmission electron microscopy, mass spectrometry, cavitation.
References: 

1. C.H.Xue, R.J.Zhou, M.M.Shi et al., Nanotechnology, 19, 325606 (2008). https://doi.org/10.1088/0957-4484/19/32/325606

2. J.Lin, C.He, Y.Zhao et al., Sens. Actuators. B, 137, 768 (2009). https://doi.org/10.1016/j.snb.2009.01.033

3. J.Cveticanin, A.Krkljes, Z.Kacarevic-Popovic et al., Appl. Surf. Sci., 256, 7048 (2010). https://doi.org/10.1016/j.apsusc.2010.05.023

4. B.Xue, P.Chen, Q.Hong et al., J. Mater. Chem., 11, 2378 (2001). https://doi.org/10.1039/b100618p

5. A.Zamudio, A.L.Elias, J.A.Rodriguez-Manzo et al., Small, 2, 346 (2006). https://doi.org/10.1002/smll.200500348

6. Y.Liu, J.Tang, X.Chen et al., Carbon, 44, 381 (2006). https://doi.org/10.1016/j.carbon.2005.09.006

7. N.X.Dinh, N.V.Quy, T.Q.Huy et al., J. Nanomater., 2015, 814379 (2015). https://doi.org/10.1155/2015/814379

8. Y.Liu, Y.Hu, R.Chen et al., Curr. Nanosci., 12, 411 (2016). https://doi.org/10.2174/1573413712666151120223325

9. S.Sahoo, S.Husale, S.Karna et al., J. Am. Chem. Soc., 133, 4005 (2011). https://doi.org/10.1021/ja1093327

10. M.Aflori, M.Butnaru, B.-M.Tihauan et al., Nanomaterials, 9, 428 (2019). https://doi.org/10.3390/nano9030428

11. A.Krainoi, C.Kummerlowe, N.Vennemann et al., J. Appl. Polym. Sci., 136, 47281 (2019). https://doi.org/10.1002/app.47281

12. W.M.Daoush, S.H.Hong, J. Exp. Nanosci., 8, 742 (2013). https://doi.org/10.1080/17458080.2011.604959

13. V.K.Rangari, G.M.Mohammad, S.Jeelani et al., Nanotechnology, 21, 095102 (2010). https://doi.org/10.1088/0957-4484/21/9/095102

14. J.H.Bang, K.S.Suslick, Adv. Mater., 22, 1039 (2010). https://doi.org/10.1002/adma.200904093

15. H.Xu, B.W.Zeiger, K.S.Suslick, Chem. Soc. Rev., 42, 2555 (2013). https://doi.org/10.1039/C2CS35282F

16. J.J.Hinman, K.S.Suslick, Top. Curr. Chem., 375, 12 (2017). https://doi.org/10.1007/s41061-016-0100-9

17. A.Gedanken, Ultrason. Sonochem., 11, 47 (2004). https://doi.org/10.1016/j.ultsonch.2004.01.037

18. S.Manickam, Cavitation: A Novel Energy-efficient Technique for the Generation of Nanomaterials, ed. by S.Manickam, M.Ashokkumar, Boca Raton: Pan Stanford Publishing (2014). https://doi.org/10.1201/b15669

19. V.V.Chagovets, M.V.Kosevich, S.G.Stepanian et al., J. Phys. Chem. C, 116, 20579 (2012). https://doi.org/10.1021/jp306333c

20. V.A.Karachevtsev, A.Yu.Glamazda, U.Dettlaff-Weglikowska et al., in: Spectroscopy of Emerging Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 165, Springer, Dordrecht (2004), p.139.

21. M.V.Kosevich, V.V.Chagovets, O.V.Severinovskaya et al., J. Anal. Chem., 67, 987 (2012). https://doi.org/10.1134/S1061934812130060

22. C.Staudt, R.Heinrich, A.Wucher, Nucl. Instrum. Meth. Phys. Res. B, 164-165, 677 (2000). https://doi.org/10.1016/S0168-583X(99)01078-2

23. R.T.La Porte, D.S.Moreno, M.C.Striano et al., Laser Chem., 20, 23 (2002). https://doi.org/10.1080/02786270212132

24. L.Hua, J.Chen, L.Ge et al., J. Nanopart. Res., 9, 1133 (2007). https://doi.org/10.1007/s11051-007-9244-4

25. V.Prysiazhnyi, F.Dycka, J.Kratochvil et al., J. Vac. Sci. Technol. B, 37, 012906 (2019). https://doi.org/10.1116/1.5050878

26. M.-C.Wu, C.-L.Li, C.-K.Hu et al., Phys. Rev. B, 74, 125424 (2006). https://doi.org/10.1103/PhysRevB.74.125424

27. R.Salkar, P.Jeevandam, S.T.Aruna et al., J. Mater. Chem., 9, 1333 (1999). https://doi.org/10.1039/a900568d

28. V.-S.Manoiu, A.Aloman, U.P.B. Sci. Bull., Ser. B, 72, 179 (2010).

29. L.Dharmarathne, M.Ashokkumar, F.Grieser, J. Phys. Chem. A, 117, 2409 (2013). https://doi.org/10.1021/jp312389n

30. M.Gutierrez, A.Henglein, J.K.Dohrmann, J. Phys. Chem., 91, 6687 (1987). https://doi.org/10.1021/j100311a026

31. M.Kohno, T.Mokudai, T.Ozawa et al., J. Clin. Biochem. Nutr.. 49, 96 (2011). https://doi.org/10.3164/jcbn.10-130

32. A.J.Slifka, G.Singh, D.S.Lauria et al., Appl. Phys. Express, 3, 065103 (2010). https://doi.org/10.1143/APEX.3.065103

33. P.Xiao, W.J.Li, R.Du, IEEE Trans. Nanotechnol., 10, 520 (2011). https://doi.org/10.1109/TNANO.2010.2050004

34. Y.Y.Huang, T.P.J.Knowles, E.M.Terentjev, Adv. Mater., 21, 3945 (2009). https://doi.org/10.1002/adma.200900498

35. G.Pagania, M.J.Greenc, P.Poulind et al., Proc. Natl. Acad. Sci. USA, 109, 11599 (2012). https://doi.org/10.1073/pnas.1200013109

36. S.K.Choi, K.-Y.Chun, S.-B.Lee, Diamond Relat. Mater., 18, 637 (2009). https://doi.org/10.1016/j.diamond.2008.11.006

37. D.R.Lide, CRC Handbook of Chemistry and Physics, 88th ed. by D.R.Lide, Boca Raton:Taylor & Francis Group (2008).

38. V.P.Skripov, V.P.Koverda, V.N.Skokov, Phys. Status Solidi, 66, 109 (1981). https://doi.org/10.1002/pssa.2210660111

39. N.H.Kim, J.-Y.Kim J.-Y, K.J.Ihn, J. Nanosci. Nanotechnol., 7, 3805 (2007). https://doi.org/10.1166/jnn.2007.044

40. O.Supponen, D.Obreschkow, P.Kobel et al., J. Phys.:Conf. Ser., 656, 012038 (2015). https://doi.org/10.1088/1742-6596/656/1/012038

41. I.Perelshtein, G.Applerot, N.Perkas et al., Nanotechnology, 19, 245705 (2008). https://doi.org/10.1088/0957-4484/19/24/245705

42. N.Perkas, G.Amirian, G.Applerot et al., Nanotechnology, 19, 435604 (2008). https://doi.org/10.1088/0957-4484/19/43/435604

43. R.Gottesman, S.Shukla, N.Perkas et al., Langmuir, 27, 720 (2011) https://doi.org/10.1021/la103401z

Current number: