Funct. Mater. 2019; 26 (4): 734-743.

doi:https://doi.org/10.15407/fm26.04.734

The mechanism of the cyclic switchover effect observed in electrochemical systems based on point contacts

V.A.Lykah1, A.P.Pospelov1, G.V.Kamarchuk2, V.L.Vakula2, E.S.Syrkin2

1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychov Str., 61002 Kharkiv, Ukraine
2B.Verkin Institute for Low-Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Abstract: 

The paper proposes a mechanism of the cyclic switchover effect observed in electrochemical systems with point contacts used as nano-sized solid-state electrodes. The effect consists in cyclic processes of formation and dissolution of nano-dendrites synthesized in an electrolyte; it is generated by a new type of electrochemical electrode system - the gapless electrode system formed on the surface of the point-contact conduction channel. The main features of the cyclic switchover effect are analyzed in the framework of a self-oscillation model; the feedback effects are discussed. The paper also studies the properties of the gapless electrode system and examines the evolution of the conduction channel of the point-contact nanostructure. It is shown that the crucial condition for the unique evolution of the conduction channel is the formation of an electric arc responsible for the redistribution of the material and current in the electrochemical system. The proposed mechanism provides an adequate description of the experimentally observed phenomena and promises to be a useful tool for future studies. The results obtained in the paper can be used to develop a new generation of highly sensitive sensors based on the quantized conductance of dendritic point contacts immersed in electrolyte.

Keywords: 
Yanson point contact, nano-objects, gapless electrode system, cyclic switchover effect, self-oscillation, electrochemical arc.
References: 

1. I.K.Yanson, J. Exp. Theor. Phys., 39, 506 (1974).

2. I.K.Yanson, Yu.G.Naidyuk, V.V.Fisun et al., Nano Lett., 7, 927 (2007). https://doi.org/10.1021/nl0628192

3. G.V.Kamarchuk, A.P.Pospelov, L.V.Kamarchuk, I.G.Kushch, in: V.A.Karachevtsev (ed.), Nanobiophysics: Fundamentals and Applications, Pan Stanford Publishing, Singapore (2015), p.327. https://doi.org/10.1201/b20480-12

4. Yu.G.Naidyuk, I.K.Yanson, Point-contact Spectroscopy, Springer, New York (1965).

5. Yu.V.Sharvin, J. Exp. Theor. Phys., 21, 655 (1965).

6. I.O.Kulik, A.N.Omel'yanchuk, R.I.Shekhter, Sov. J. Low Temp. Phys., 3, 740 (1977).

7. I.O.Kulik, I.K.Yanson, Sov. J. Low Temp. Phys., 4, 596 (1978).

8. I.O.Kulik, R.I.Shekhter, A.G.Shkorbatov, J. Exp. Theor. Phys., 54, 1130 (1981).

9. A.V.Khotkevich, I.K.Yanson, Atlas of Point Contact Spectra of Electron-phonon Interactions in Metals, Kluwer Academic Publishers, Boston, Dordrecht, London (1995). https://doi.org/10.1007/978-1-4615-2265-2

10. G.V.Kamarchuk, A.V.Khotkevich, V.M.Bagatsky et al., Phys. Rev. B, 63, 073107 (2001). https://doi.org/10.1103/PhysRevB.63.073107

11. L.I.Glazman, G.B.Lesovik, D.E.Khmel'nitskii, R.I.Shekhter, JETP Lett., 48, 238 (1988).

12. E.N.Bogachek, A.M.Zagoskin, I.O.Kulik, Sov. J. Low Temp. Phys., 16, 796 (1990).

13. J.M.Krans, J.M.van Ruitenbeek, V.V.Fisun et al., Nature (London, UK), 375, 767 (1995). https://doi.org/10.1038/375767a0

14. G.V.Kamarchuk, O.P.Pospelov, A.V.Yeremenko et al., Europhys. Lett., 76, 575 (2006). https://doi.org/10.1209/epl/i2006-10303-6

15. G.V.Kamarchuk, I.G.Kolobov, A.V.Khotkevich et al., Sens. Actuators B, 134, 1022 (2008). https://doi.org/10.1016/j.snb.2008.07.012

16. I.Kushch, N.Korenev, L.Kamarchuk et al., J. Breath Res., 9, 047109 (2015). https://doi.org/10.1088/1752-7155/9/4/047111

17. G.V.Kamarchuk, A.P.Pospelov, A.V.Savitsky, L.V.Koval, Low Temp. Phys., 40, 937 (2014). https://doi.org/10.1063/1.4898792

18. A.P.Pospelov, A.I.Pilipenko, G.V.Kamarchuk et al., J. Phys. Chem. C, 119, 632 (2015). https://doi.org/10.1021/jp506649u

19. A.I.Yanson, Dissertation, Leiden University (2001).

20. A.I.Pilipenko, A.P.Pospelov, G.V.Kamarchuk et al., Functional Materials, 18, 324 (2011).

21. A.P.Pospelov, G.V.Kamarchuk, A.V.Savytskyi et al., Functional Materials, 24, 463 (2017). https://doi.org/10.15407/fm24.03.463

22. A.P.Pospelov, G.V.Kamarchuk, Yu.L.Alexandrov et al., in: E.C.Faulques, D.L.Perry, A.V.Yeremenko (eds.), Spectroscopy of Emerging materials. Kluwer Academic Publishers, Boston, Dordrecht, London (2004), p.331.

23. A.I.Yanson, I.K.Yanson, J.M.van Ruitenbeek, Nature (London, UK), 400, 144 (1999). https://doi.org/10.1038/22074

24. V.Rajagopalan, S.Boussaad, N.J.Tao, Nano Lett., 3, 851 (2003). https://doi.org/10.1021/nl034195v

25. C.Obermair, H.Kuhn, Th.Schimmel, Beilstein J. Nanotechnol., 2, 740 (2011). https://doi.org/10.3762/bjnano.2.81

26. J.O.M.Bockris, A.K.N.Reddy, Modern Electrochemistry, 2nd ed. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow (2004).

27. A.Feher, A.A.Mamalui, A.Ya.Dul'fan et al., Low Temp. Phys., 31, 921 (2005). https://doi.org/10.1063/1.2127874

28. Y.A.Kosevich, O.Y.Tkachenko, E.S.Syrkin, in: J.Archilla, F.Palmero, M.Lemos et al. (eds.), Nonlinear Systems, vol.2. Springer, Cham (2018).

29. M.L.Polyakov, A.Feher, E.S.Syrkin et al., J. Mol. Liq., 127, 65 (2006). https://doi.org/10.1016/j.molliq.2006.03.016

30. S.S.Braun, Elementary Processes in a Gas Discharge Plasma, Gostekhizdat, Moscow (1961) [in Russian].

31. P.N.Belkin, Electrochemical-thermal treatment of metals and alloys. Mir, Moscow (2005) [in Russian].

32. W.Benenson, J.W.Harris, H.Stocker, H.Lutz (eds.), Handbook of Physics. Springer, New York (2006).

33. P.G.Debenedetti, Metastable Liquids: Concepts and Principles, Princeton University Press, Princeton (1996).

34. I.M.Crichton, J.A.McGeough, J. Appl. Electrochem., 15, 113 (1985). https://doi.org/10.1007/BF00617748

35. A.B.Khayry, J.A.McGeough, Proc. R. Soc. London Ser. A, 412, 403 (1987). https://doi.org/10.1098/rspa.1987.0094

36. E.P.Velikhov, V.S.Golubev, S.V.Pashkin, Sov. Phys. Usp., 25, 340 (1982). https://doi.org/10.1070/PU1982v025n05ABEH004552

37. J.Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press, Cambridge, New York (2007). https://doi.org/10.1017/CBO9780511755705

38. P.H.Diamond, S.I.Itoh, K.Itoh, Modern Plasma Physics, vol. 1., Cambridge University Press, Cambridge, New York (2010). https://doi.org/10.1017/CBO9780511780875

39. A.A.Andronov, A.A.Vitt, S.E.Khaikin, Theory of Oscillators, Pergamon Press, Oxford, London, Edinburgh (1966).

40. A.Jenkins, Phys. Rep., 525, 167 (2013). https://doi.org/10.1016/j.physrep.2012.10.007

41. G.V.Kamarchuk, A.P.Pospelov, A.V.Savytskyi et al., SN Appl. Sci., 1, 244 (2019). https://doi.org/10.1007/s42452-019-0241-x

.

Current number: