Вы здесь

Funct. Mater. 2019; 26 (4): 734-743.

doi:https://doi.org/10.15407/fm26.04.734

The mechanism of the cyclic switchover effect observed in electrochemical systems based on point contacts

V.A.Lykah1, A.P.Pospelov1, G.V.Kamarchuk2, V.L.Vakula2, E.S.Syrkin2

1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychov Str., 61002 Kharkiv, Ukraine
2B.Verkin Institute for Low-Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Abstract: 

The paper proposes a mechanism of the cyclic switchover effect observed in electrochemical systems with point contacts used as nano-sized solid-state electrodes. The effect consists in cyclic processes of formation and dissolution of nano-dendrites synthesized in an electrolyte; it is generated by a new type of electrochemical electrode system - the gapless electrode system formed on the surface of the point-contact conduction channel. The main features of the cyclic switchover effect are analyzed in the framework of a self-oscillation model; the feedback effects are discussed. The paper also studies the properties of the gapless electrode system and examines the evolution of the conduction channel of the point-contact nanostructure. It is shown that the crucial condition for the unique evolution of the conduction channel is the formation of an electric arc responsible for the redistribution of the material and current in the electrochemical system. The proposed mechanism provides an adequate description of the experimentally observed phenomena and promises to be a useful tool for future studies. The results obtained in the paper can be used to develop a new generation of highly sensitive sensors based on the quantized conductance of dendritic point contacts immersed in electrolyte.

Keywords: 
Yanson point contact, nano-objects, gapless electrode system, cyclic switchover effect, self-oscillation, electrochemical arc.
References: 

1. I.K.Yanson, J. Exp. Theor. Phys., 39, 506 (1974).

2. I.K.Yanson, Yu.G.Naidyuk, V.V.Fisun et al., Nano Lett., 7, 927 (2007).

3. G.V.Kamarchuk, A.P.Pospelov, L.V.Kamarchuk, I.G.Kushch, in: V.A.Karachevtsev (ed.), Nanobiophysics: Fundamentals and Applications, Pan Stanford Publishing, Singapore (2015), p.327.

4. Yu.G.Naidyuk, I.K.Yanson, Point-contact Spectroscopy, Springer, New York (1965).

5. Yu.V.Sharvin, J. Exp. Theor. Phys., 21, 655 (1965).

6. I.O.Kulik, A.N.Omel'yanchuk, R.I.Shekhter, Sov. J. Low Temp. Phys., 3, 740 (1977).

7. I.O.Kulik, I.K.Yanson, Sov. J. Low Temp. Phys., 4, 596 (1978).

8. I.O.Kulik, R.I.Shekhter, A.G.Shkorbatov, J. Exp. Theor. Phys., 54, 1130 (1981).

9. A.V.Khotkevich, I.K.Yanson, Atlas of Point Contact Spectra of Electron-phonon Interactions in Metals, Kluwer Academic Publishers, Boston, Dordrecht, London (1995).

10. G.V.Kamarchuk, A.V.Khotkevich, V.M.Bagatsky et al., Phys. Rev. B, 63, 073107 (2001).

11. L.I.Glazman, G.B.Lesovik, D.E.Khmel'nitskii, R.I.Shekhter, JETP Lett., 48, 238 (1988).

12. E.N.Bogachek, A.M.Zagoskin, I.O.Kulik, Sov. J. Low Temp. Phys., 16, 796 (1990).

13. J.M.Krans, J.M.van Ruitenbeek, V.V.Fisun et al., Nature (London, UK), 375, 767 (1995).

14. G.V.Kamarchuk, O.P.Pospelov, A.V.Yeremenko et al., Europhys. Lett., 76, 575 (2006).

15. G.V.Kamarchuk, I.G.Kolobov, A.V.Khotkevich et al., Sens. Actuators B, 134, 1022 (2008).

16. I.Kushch, N.Korenev, L.Kamarchuk et al., J. Breath Res., 9, 047109 (2015).

17. G.V.Kamarchuk, A.P.Pospelov, A.V.Savitsky, L.V.Koval, Low Temp. Phys., 40, 937 (2014).

18. A.P.Pospelov, A.I.Pilipenko, G.V.Kamarchuk et al., J. Phys. Chem. C, 119, 632 (2015).

19. A.I.Yanson, Dissertation, Leiden University (2001).

20. A.I.Pilipenko, A.P.Pospelov, G.V.Kamarchuk et al., Functional Materials, 18, 324 (2011).

21. A.P.Pospelov, G.V.Kamarchuk, A.V.Savytskyi et al., Functional Materials, 24, 463 (2017).

22. A.P.Pospelov, G.V.Kamarchuk, Yu.L.Alexandrov et al., in: E.C.Faulques, D.L.Perry, A.V.Yeremenko (eds.), Spectroscopy of Emerging materials. Kluwer Academic Publishers, Boston, Dordrecht, London (2004), p.331.

23. A.I.Yanson, I.K.Yanson, J.M.van Ruitenbeek, Nature (London, UK), 400, 144 (1999).

24. V.Rajagopalan, S.Boussaad, N.J.Tao, Nano Lett., 3, 851 (2003).

25. C.Obermair, H.Kuhn, Th.Schimmel, Beilstein J. Nanotechnol., 2, 740 (2011).

26. J.O.M.Bockris, A.K.N.Reddy, Modern Electrochemistry, 2nd ed. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow (2004).

27. A.Feher, A.A.Mamalui, A.Ya.Dul'fan et al., Low Temp. Phys., 31, 921 (2005).

28. Y.A.Kosevich, O.Y.Tkachenko, E.S.Syrkin, in: J.Archilla, F.Palmero, M.Lemos et al. (eds.), Nonlinear Systems, vol.2. Springer, Cham (2018).

29. M.L.Polyakov, A.Feher, E.S.Syrkin et al., J. Mol. Liq., 127, 65 (2006).

30. S.S.Braun, Elementary Processes in a Gas Discharge Plasma, Gostekhizdat, Moscow (1961) [in Russian].

31. P.N.Belkin, Electrochemical-thermal treatment of metals and alloys. Mir, Moscow (2005) [in Russian].

32. W.Benenson, J.W.Harris, H.Stocker, H.Lutz (eds.), Handbook of Physics. Springer, New York (2006).

33. P.G.Debenedetti, Metastable Liquids: Concepts and Principles, Princeton University Press, Princeton (1996).

34. I.M.Crichton, J.A.McGeough, J. Appl. Electrochem., 15, 113 (1985).

35. A.B.Khayry, J.A.McGeough, Proc. R. Soc. London Ser. A, 412, 403 (1987).

36. E.P.Velikhov, V.S.Golubev, S.V.Pashkin, Sov. Phys. Usp., 25, 340 (1982).

37. J.Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press, Cambridge, New York (2007).

38. P.H.Diamond, S.I.Itoh, K.Itoh, Modern Plasma Physics, vol. 1., Cambridge University Press, Cambridge, New York (2010).

39. A.A.Andronov, A.A.Vitt, S.E.Khaikin, Theory of Oscillators, Pergamon Press, Oxford, London, Edinburgh (1966).

40. A.Jenkins, Phys. Rep., 525, 167 (2013).

41. G.V.Kamarchuk, A.P.Pospelov, A.V.Savytskyi et al., SN Appl. Sci., 1, 244 (2019).

Current number: