Funct. Mater. 2019; 26 (4): 752-758.

doi:https://doi.org/10.15407/fm26.04.752

Increase of the α-Al2O3 phase content in MAO-coating by optimizing the composition of oxidated aluminum alloy

V.V.Subbotina1, U.F.Al-Qawabeha2, O.V.Sobol'1, V.V.Belozerov1, V.V.Schneider1, T.A.Tabaza2, S.M.Al-Qawabah2

1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychov Str., 61002 Kharkiv, Ukraine
2Al-Zaytoonah University, 594 Queen Alia Airport Str., 11733 Amman, Jordan

Abstract: 

By the method of microarc oxidation of technically pure aluminum and aluminum doped with copper, vanadium and zinc (in an alkali silicate electrolyte at a current density of ~ 20 A/dm2), the resulting coating is about 100 μm thick. The nonmonotonic dependence of the phase composition and hardness on the doping level of aluminum (Al + Cu, Al + Zn, and Al + V systems) is revealed. It was established that the degree of influence of alloying elements on the transformation process of γ-Al2O3 -> α-Al2O is determined by their crystal-chemical characteristics (charge, ionic radius). Therefore, the mechanism of formation of the phase composition should be associated with the stabilization and destabilization of the γ-Al2O phase. The results indicate that Cu2+ cations contribute to destabilization of the γ-Al2O3 phase, while Zn2+ and V5+ cations stabilize the γ-Al2O3 phase (with a Zn and V content of more than 3 wt.%). A model is proposed for explaining the results obtained, which is based on the formation of the γ-Al2O phase in the initial period of time and the appearance of the γ-Al2O3 phase in subsequent periods (as a result of an increase in the power of microdischarges). It is shown that the highest hardness of coatings on aluminum alloys (about 16 GPa) is achieved with a copper content in the range of 3-4 wt.%.

Keywords: 
microarc oxidation, corundum, structural engineering, anode-cathode regime, coating thickness, phase composition, properties.
References: 

1. P.H.Mayrhofer, C.Mitterer, L.Hultman, H.Clemens, Progress Mater. Sci., 51, 1032 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.002

2. O.V.Sobol', A.A.Meilekhov, Techn. Phys. Lett., 44, 63 (2018). https://doi.org/10.1134/S1063785018010224

3. A.E.Barmin, A.I.Zubkov, A.I.Il'inskii, Functional Materials, 19, 256 (2012).

4. O.V.Sobol', Phys. Solid State, 49, 1161 (2007). https://doi.org/10.1134/S1063783407060236

5. O.V.Sobol, A.A.Postelnyk, A.A.Meylekhov et al., J. Nano Electron. Phys., 9, 03003 (2017). https://doi.org/10.21272/jnep.9(3).03003

6. Nanostructured Coatings, ed. by A.Cavaleiro, De Hosson, Th.M.Jeff, Springer-Verlag (2006).

7. O.V.Sobol, A.A.Andreev, V.F.Gorban et al., J. Nano Electron. Phys, 8, 01042 (2016).

8. A.L.Yerokhin, X.Nie, A.Leyland et al., Surf. Coat. Technol., 122, 73 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7

9. S.Wang, F.Xie, X.Wu, Mater. Chem. Phys., 202, 114 (2017). https://doi.org/10.1016/j.matchemphys.2017.09.006

10. Y.Yang, Y.Gu, L.Zhang et al., J. Mater. Engin. Perform., 26, 6099 (2017). https://doi.org/10.1007/s11665-017-3037-4

11. J.A.Curran, T.W.Clyne, Surf. Coat. Technol., 199, 168 (2005). https://doi.org/10.1016/j.surfcoat.2004.09.037

12. V.Belozerov, A.Mahatilova, O.Sobol' et al., East-Europ J. Enter. Technol.., 2, 39 (2017). https://doi.org/10.15587/1729-4061.2017.96721

13. P.Bala Srinivasan, J.Liang, C.Blawert et al., Appl. Surf. Sci., 255, 4212 (2009). https://doi.org/10.1016/j.apsusc.2008.11.008

14. Q.-P.Tran, Y.-C.Kuo, J.-K.Sun et al., Surf. Coat. Technol., 303, 61 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.049

15. R.O.Hussein, D.O.Northwood, X.Nie, Surf. Coat. Technol., 237, 357 (2013). https://doi.org/10.1016/j.surfcoat.2013.09.021

16. V.V.Subbotina, O.V.Sobol', V.V.Belozerov et al., J. Nano-Electr. Phys., 11, 03025 (2019). https://doi.org/10.21272/jnep.11(3).03025

17. V.Belozerov, O.Sobol', A.Mahatilova et al., East-Europ J. Enter. Technol., 1, 43 (2018). https://doi.org/10.15587/1729-4061.2018.121744

18. V.Belozerov, O.Sobol', A.Mahatilova et al., East-Europ J. Enter. Technol., 5, 52 (2017). https://doi.org/10.15587/1729-4061.2017.112065

19. D.K.Smith, R.Jenkins, J. Res. Natl. Inst. Stand. Technol., 101, 259 (1996). https://doi.org/10.6028/jres.101.027

20. A.A.Klopotov, Yu.A.Abzaev, A.I.Potekaev, O.G.Volokitin, Osnovi Rentgenostrukturnogo Analiza v Materialovedenii, Izd-vo Tom. Gos. Arhit.-Stroit. Un-ta, Tomsk (2012).

21. I.V.Syminov, P.N.Belkin, A.V.Epelfeld et al., Plazmenno-elektroliticheskoe Modifitsirovanie Poverhnosti Metallov i Splavov, v. 2, Tehnosfera, Moscow (2011)

.

Current number: