Вы здесь

Funct. Mater. 2019; 26 (4): 829-837.

doi:https://doi.org/10.15407/fm26.04.829

Y2O3-MgO highly-sinterable nanopowders for transparent composite ceramics

O.S.Kryzhanovska1, N.A.Safronova1, A.E.Balabanov1, R.P.Yavetskiy1, M.V.Dobrotvorskaya1, Jiang Li2, S.Petrushenko3, A.V.Tolmachev1, N.A.Matveevskaya1, E.N.Shulichenko3, V.Yu.Mayorov4, D.Sofronov5

1Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai,China
3V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
4Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-let Vladivostoku Avenue, 690022 Vladivostok, Russian Federation
5SSI "Institute for Single Crystals", STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Composite nanopowders Y2O3-MgO (1:1 by volume) were synthesized by the method of self-propagating glycine-nitrate synthesis with an excess of glycine and nitric acid. It was shown that freshly prepared powder (precursor) contains about 19 % of unreacted components and intermediate reaction products, which are removed by subsequent calcining. Crystallization of the precursor starts at calcination temperature above 600°C and leads to nucleation of the crystalline phases MgO and Y2O3. It was shown that calcining at temperatures from 800 to 1000 °C leads to the formation of nanocrystals with sizes from 20 to 90 nm, respectively. The specific surface area of composite nanopowders decreases from 48 to 16 m2/g with increasing calcination temperature in the range T = 700-1000°C. It was shown that during Y2O3-MgO calcination in the air, intense chemisorption of CO2 occurs on the surface of nanopowders. According to calculations, about 5 % of MgO is converted to magnesium carbonate. Finally,Y2O3-MgO composite ceramics with average grain size of 255 nm and transmittance of 71 % at λ = 6000 nm have been obtained by spark plasma sintering of synthesized nanopowders.

Keywords: 
nanopowders, self-propagating glycine-nitrate synthesis composite ceramics, magnesium oxide, yttrium oxide.
References: 

1. D.C.Harris, L.R.Cambrea, L.F.Johnson et al., J. Am. Ceram. Soc., 96, 3828 (2013). https://doi.org/10.1111/jace.12589

2. D.C.Harris, Infrared Phys. Technol., 39, 185 (1998). https://doi.org/10.1016/S1350-4495(98)00006-1

3. D.T.Jiang, A.K.Mukherjee, J. Am. Ceram. Soc., 93, 769 (2010). https://doi.org/10.1111/j.1551-2916.2009.03444.x

4. S.Xu, J.Li, H.Kou et al., Ceram. Int., 41, 3312 (2015). https://doi.org/10.1016/j.ceramint.2014.10.120

5. C.-H.Chen, J.K.M.Garofano, C.K.Muoto et al., J. Am. Ceram. Soc., 94, 367 (2011). https://doi.org/10.1111/j.1551-2916.2010.04343.x

6. V.L.Blair, Z.D.Fleischman, L.D.Merkle et al., Appl. Opt., 56, B154 (2017). https://doi.org/10.1364/AO.56.00B154

7. A.Iyer, J.K.M.Garofano, J.Reutenaur, J. Am. Ceram. Soc., 96, 346 (2013).

8. A.Varma, A.S.Mukasyan, A.S.Rogachev et al., Chem. Rev., 116, 14493 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

9. F.Deganelloa, A.K.Tyagib, Progr. Cryst. Growth ..Character. Mater., 64, 23 (2018). https://doi.org/10.1016/j.pcrysgrow.2018.03.001

10. Ho Jin Ma, Wook Ki Jung, Changyeon Baek, Do Kyung Kim, J. Eur. Ceram. Soc., 37, 4902 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.05.049

11. S.Ghorbani, R.Sh.Razavi, M.R.Loghman-Estarki et al., J. Clust. Sci., 43, 345 (2017). https://doi.org/10.1016/j.ceramint.2016.09.162

12. Shengquan Xu, Jiang Li, Huamin Kou et al., Ceram. Int., 41, 3312 (2015). https://doi.org/10.1016/j.ceramint.2014.10.120

13. Junxi Xie, Xiaojian Mao, Xiaokai Lia et al., Ceram. Int., 43, 40 (2017). https://doi.org/10.1016/j.ceramint.2016.08.117

14. M.Yong, D.H.Choi, K.Lee, Arch. Metall. Mater., 63, 1481 (2018).

15. S.R.Jain, K.C.Adiga, V.R.Pai Verneker, Combustion and Flame, 40, 71 (1981). https://doi.org/10.1016/0010-2180(81)90111-5

16. A.V.Zhilkina, A.A.Gordienko, N.A.Prokudina et al., Rus. J. Phys. Chem., A 87, 674 (2013). https://doi.org/10.1134/S0036024413040328

17. P.Melnikov, V.A.Nascimento, L.Z.Z.Consolo et al., J. Thermal Anal. Calorimetry, 111, 115 (2013). https://doi.org/10.1007/s10973-012-2236-3

18. Li-Hui Yin, Xu-Ping Liu, Lu-Yao Yi et al., J. Innovative Opt. Health Sci., 10, 1650052 (2017). https://doi.org/10.1142/S1793545816500528

19. Youjin Zhang, Minrui Gao, Kaidong Han et al., J. Alloys Comp., 474, 598 (2009). https://doi.org/10.1016/j.jallcom.2008.07.007

20. S.Stopic, C.Dertmann, G.Modolo, Metals, 8, 993 (2018). https://doi.org/10.3390/met8120993

21. Mohammad Khajelakzay, Reza Shoja Razavi, Masoud Barekat, Trans. Ind. Ceram. Soc., 74, 208 (2015). https://doi.org/10.1080/0371750X.2015.1089189

22. Anam Ansaria, Abad Alia, Mohd Asifa et al., New J. Chem., 42, 184 (2018). https://doi.org/10.1039/C7NJ03742B

23. Feng Chen, Ying-Jie Zhu, Ke-Wei Wang et al., Current Nanosci., 5(3), 266 (2009).

24. Gan Song, Xun Zhu Rong, Chen Qiang Liao et al., Chem. Engin. J., 283, 175 (2016). https://doi.org/10.1016/j.cej.2015.07.055

25. S.Som, S.K.Sharma, J. Phys. D: Appl. Phys., 45, 415102 (2012). https://doi.org/10.1088/1751-8113/45/41/415102

26. E.Gutierrez-Bonilla, F.Granados-Correa, V.Sanchez-Mendieta et al., J. Environ. Sci., 57, 418 (2017). https://doi.org/10.1016/j.jes.2016.11.016

Current number: