Вы здесь

Funct. Mater. 2019; 26 (4): 845-849.


Degradation of three dimensional poly(l-lactic acid) scaffolds modified by gelatin

Ye Zhang1, Hong-ming Liu2

1Department of Pharmaceutical Sciences, Zibo Vocational Institute, Shandong, 255314 Zibo, China
2Zibo Institute for Food and Drug Control, Shandong, 255086 Zibo, China


In vitro degradation of poly(l-lactic acid) (PLLA) scaffolds modified by gelatin was carried out in 0.01 M NaOH solution at 37°C for 5-6 days. The mass loss, pH value, viscosity-average molecular weight, morphology and thermal behavior during degradation were studied. The results showed that the prepared scaffolds were interpenetrating porous structure and the increased degradation time; both the viscous-average molecular weight and melting peak showed a clear upward trend, while the crystallinity and mass loss exhibited a downward trend. The semi-logarithmic linear relationship between the viscosity-average molecular weight and degradation time indicates an autocatalytic process. The mass of the PLLA scaffolds decreased by 10.33 % after 2 days of degradation and decreased by 86.19 % to the end of the experimental period. The decrease in the viscous-average molecular weight and a relatively little mass loss in the beginning of the degradation period indicate the bulk degradation. The gradual mass loss is indicated not only by the bulk degradation mechanism but also a surface erosion mechanism. The results obtained by the in vitro degradation in a NaOH solution at 37°C can find useful applications in solving the biocompatibility of PLLA scaffolds.

Poly(l-lactic acid), scaffolds, degradation, tissue engineering, gelatin.

1. P.K.Chu, X.Liu, Biomaterials Fabrication and Processing Handbook, Boca Raton, CRC Press/Taylor & Francis (2008). https://doi.org/10.1201/9780849379741

2. Y.Liu, T.Nelson, J.Chakroff et al., J. Biomed.Mater.Res., B: Appl. Biomater., 107, 750 (2019). https://doi.org/10.1002/jbm.b.34169

3. M.Salehi, S.Farzamfar, S.Bozorgzadeh, F.Bastami, J.Craniofacial Surgery, 30, 784 (2019). https://doi.org/10.1097/SCS.0000000000005398

4. N.Mobarra, M.Soleimani, M.Ghayour-Mobarhan et al., J.Cellular Physiol. 234, 11247 (2019). https://doi.org/10.1002/jcp.27779

5. G.Birhanu, S.Tanha, H.Akbari Javar et al., Pharmac.Developm. Techn, 24, 338 (2019). https://doi.org/10.1080/10837450.2018.1481429

6. G.Bahcecioglu, N.Hasirci, V.Hasirci, Intern. J.Biolog.Macromol., 124, 444 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.169

7. X.Li, X.Liu, W.Dong et al., J. Biomed. Mater.Res., B: Appl. Biomater., 90, 503 (2009). https://doi.org/10.1002/jbm.b.31311

8. F.Boccafoschi, L.Fusaro, C.Mosca et al., J. Biomed. Mater. Res. A, 100, 2373 (2012).

9. K.Parvathi, A.G.Krishnan, A.Anitha et al., Int. J.Biolog. Macromol., 110, 514 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.094

10. L.Lu, S.J.Peter, M.D.Lyman et al., Biomaterials, 21, 1595 (2000). https://doi.org/10.1016/S0142-9612(00)00048-X

11. X.Yuan, A.F.T.Mak, K.Yao, Polymer Degradation and Stability, 79, 45 (2003). https://doi.org/10.1016/S0141-3910(02)00237-9

12. Y.Zhang, Functional Materials, 24, 660 (2017). https://doi.org/10.15407/fm24.03.481

13. Y.Cha, C.G.Pitt, Biomaterials, 11, 108 (1990). https://doi.org/10.1016/0142-9612(90)90124-9

14. X.Yuan, A.F.T.Mak, K.Yao, Polymer Degradation and Stability, 75, 45 (2002). https://doi.org/10.1016/S0141-3910(01)00203-8

15. B.Wunderlich, Macromolecular Physics, vol.3, Academic, NewYork (1980).

16. M.Yasuniwa, S.Tsubakihara, K.Ohoshita, S.I.Tokudome, J. Polymer Sci. B: Polymer Phys., 39, 2005 (2001). https://doi.org/10.1002/polb.1176

17. M.Yasuniwa, S.Tsubakihara, Y.Sugimoto, C.Nakafuku, J. Polymer Sci. B: Polymer Phys., 42, 25 (2004). https://doi.org/10.1002/polb.10674

Current number: