Funct. Mater. 2019; 26 (4): 850-855.

doi:https://doi.org/10.15407/fm26.04.850

The synthesis of PEG-PCL and the physicochemical properties of its self-assembled nanoparticles

Fawu Wang, Zhongxin Zhang, Huaxin Rao

Department of Materials Science and Engineering, Jinan University, 510632 Guangzhou, China

Abstract: 

In this paper, poly(caprolactone)-poly(ethylene glycol) (PEG-PCL) was synthesized by using potassium bis(trimethylsilyl)amide as a catalyst, ethylene oxide and ε-caprolactone as a raw material. Then, amphiphilic block polymers PEG-PCL of different molecular weights were synthesized by this method. These were PEG2K-PCL2K, PEG5K-PCL2K and PEG5K-PCL5K. But this method is different from most literature reports, where the amphiphilic block copolymer PEG-PCL was synthesized by using fixed molecular weight polyethylene glycolmonomethyl ether (PEG) and ε-caprolactone as raw materials, and stannous caprylate (Sn(Oct)2) as a catalyst. This paper introduces the detailed experimental procedures. The copolymers obtained were characterized by Fourier-transform infrared spectroscopy, gel permeation chromatography and hydrogen nuclear magnetic resonance. Using the method of dialysis, the amphiphilic blockcopolymer PEG-PCL was self-assembled in water to form polymer nanoparticles. The physicochemical properties of the polymer nanoparticles were characterized by dynamic laser scattering, scanning electron microscopy and Zeta potentiometer.

Keywords: 
PEG-PCL, nanoparticles, amphiphilic block copolymer, self-assembled nanoparticles.
References: 

1. K.Kataoka, G.S.Kwon, M.Yokoyama, J. Control Rel., 24, 119 (1993). https://doi.org/10.1016/0168-3659(93)90172-2

2. P.N.Hurter, T.A.Hatton, Langmuir, 8, 1291 (1992). https://doi.org/10.1021/la00041a010

3. J.H.Degroot, K.T.Zijlstra, H.W.Kuipers et al., Biomaterials, 18, 613 (1997). https://doi.org/10.1016/S0142-9612(96)00169-X

4. J.Molpeceres, M.Chacon, M.Guzman et al.. Int. J. Pharm,, 187, 101 (1999). https://doi.org/10.1016/S0378-5173(99)00177-5

5. L.Marchalheussler, D.Sirbat, M.Hofman et al., Pharm Res., 10, 385 (1993). https://doi.org/10.1023/A:1018936205485

6. A.Rosler, G.W.M.Vandermeulen, H.Klok, Adv. Drug Deliv., 53, 95 (2001). https://doi.org/10.1016/S0169-409X(01)00222-8

7. Y.Sadzuka, A.Nakade, R.Hirama et al., Int. J. Pharm., 238, 171 (2002). https://doi.org/10.1016/S0378-5173(02)00075-3

8. I.Astafieva, X.F.Zhong, A.Eisenberg, Macromolecules, 26, 7339 (1993). https://doi.org/10.1021/ma00078a034

9. V.P.Torchilin, J. Control Rel., 73, 137 (2001). https://doi.org/10.1016/S0168-3659(01)00299-1

10. T.Riley, T.Govender, S.Stolnik et al., Colloid Surf. B: Biointerf., 16, 147 (1999). https://doi.org/10.1023/A:1018912522342

11. X.J.Zhao, K.F.Tan, J.Xing, J. Chromatogr. A, 1587, 197 (2019). https://doi.org/10.1016/j.chroma.2018.12.021

12. J.L.Peng, M.L.Qi, J. Chromatogr. A, 1569, 186 (2018). https://doi.org/10.1016/j.chroma.2018.07.047

13. T.Sun, B.Li, Y.Li, Chromatographia, 1 (2019).

14. X.Han, H.Wang, X.X.He et al., J. Chromatogr. A, 1468, 192 (2016) https://doi.org/10.1016/j.chroma.2016.09.063

15. T.Rosen, I.Goldberg, W.Navarra et al., Angew. Chem. Int. Edit., 130, 7309 (2018). https://doi.org/10.1002/ange.201803063

16. E.Martella, C.Ferroni, A.Guerrini et al., Int. J. Mol. Sci., 19, 3670 (2018) https://doi.org/10.3390/ijms19113670

17. Y.S.Nam, J.-W.Kim, J.Shim et al., Langmuir, 26, 13038 (2010). https://doi.org/10.1021/la102084f

18. R.A.Petros, J.M.DeSimone, Nat. Rev. Drug Discov., 9, 615 (2010). https://doi.org/10.1038/nrd2591

19. B.A.Pulaski, S.Ostrand-Rosenberg, S. Mouse Curr. Protoc. Immunol. 2000, 39, 20.2.1-20.2.16. https://doi.org/10.1002/0471142735.im2003s39

20. J.He, L.N.Yu, X.B.Huang, M.L.Qi, J. Chromatogr. A, 1599, 223 (2019) https://doi.org/10.1016/j.chroma.2019.04.018

21. R.Haas, T.C.Schmidt, K.Steinbach, E.von Low, Fresen. J. Anal. Chem., 359, 497 (1997). https://doi.org/10.1007/s002160050620

Current number: