Вы здесь

Funct. Mater. 2019; 26 (4): 850-855.

doi:https://doi.org/10.15407/fm26.04.850

The synthesis of PEG-PCL and the physicochemical properties of its self-assembled nanoparticles

Fawu Wang, Zhongxin Zhang, Huaxin Rao

Department of Materials Science and Engineering, Jinan University, 510632 Guangzhou, China

Abstract: 

In this paper, poly(caprolactone)-poly(ethylene glycol) (PEG-PCL) was synthesized by using potassium bis(trimethylsilyl)amide as a catalyst, ethylene oxide and ε-caprolactone as a raw material. Then, amphiphilic block polymers PEG-PCL of different molecular weights were synthesized by this method. These were PEG2K-PCL2K, PEG5K-PCL2K and PEG5K-PCL5K. But this method is different from most literature reports, where the amphiphilic block copolymer PEG-PCL was synthesized by using fixed molecular weight polyethylene glycolmonomethyl ether (PEG) and ε-caprolactone as raw materials, and stannous caprylate (Sn(Oct)2) as a catalyst. This paper introduces the detailed experimental procedures. The copolymers obtained were characterized by Fourier-transform infrared spectroscopy, gel permeation chromatography and hydrogen nuclear magnetic resonance. Using the method of dialysis, the amphiphilic blockcopolymer PEG-PCL was self-assembled in water to form polymer nanoparticles. The physicochemical properties of the polymer nanoparticles were characterized by dynamic laser scattering, scanning electron microscopy and Zeta potentiometer.

Keywords: 
PEG-PCL, nanoparticles, amphiphilic block copolymer, self-assembled nanoparticles.
References: 

1. K.Kataoka, G.S.Kwon, M.Yokoyama, J. Control Rel., 24, 119 (1993).

2. P.N.Hurter, T.A.Hatton, Langmuir, 8, 1291 (1992).

3. J.H.Degroot, K.T.Zijlstra, H.W.Kuipers et al., Biomaterials, 18, 613 (1997).

4. J.Molpeceres, M.Chacon, M.Guzman et al.. Int. J. Pharm,, 187, 101 (1999).

5. L.Marchalheussler, D.Sirbat, M.Hofman et al., Pharm Res., 10, 385 (1993).

6. A.Rosler, G.W.M.Vandermeulen, H.Klok, Adv. Drug Deliv., 53, 95 (2001).

7. Y.Sadzuka, A.Nakade, R.Hirama et al., Int. J. Pharm., 238, 171 (2002).

8. I.Astafieva, X.F.Zhong, A.Eisenberg, Macromolecules, 26, 7339 (1993).

9. V.P.Torchilin, J. Control Rel., 73, 137 (2001).

10. T.Riley, T.Govender, S.Stolnik et al., Colloid Surf. B: Biointerf., 16, 147 (1999).

11. X.J.Zhao, K.F.Tan, J.Xing, J. Chromatogr. A, 1587, 197 (2019).

12. J.L.Peng, M.L.Qi, J. Chromatogr. A, 1569, 186 (2018).

13. T.Sun, B.Li, Y.Li, Chromatographia, 1 (2019).

14. X.Han, H.Wang, X.X.He et al., J. Chromatogr. A, 1468, 192 (2016)

15. T.Rosen, I.Goldberg, W.Navarra et al., Angew. Chem. Int. Edit., 130, 7309 (2018).

16. E.Martella, C.Ferroni, A.Guerrini et al., Int. J. Mol. Sci., 19, 3670 (2018)

17. Y.S.Nam, J.-W.Kim, J.Shim et al., Langmuir, 26, 13038 (2010).

18. R.A.Petros, J.M.DeSimone, Nat. Rev. Drug Discov., 9, 615 (2010).

19. B.A.Pulaski, S.Ostrand-Rosenberg, S. Mouse Curr. Protoc. Immunol. 2000, 39, 20.2.1-20.2.16.

20. J.He, L.N.Yu, X.B.Huang, M.L.Qi, J. Chromatogr. A, 1599, 223 (2019)

21. R.Haas, T.C.Schmidt, K.Steinbach, E.von Low, Fresen. J. Anal. Chem., 359, 497 (1997).

Current number: