Funct. Mater. 2020; 27 (1): 107-116.

doi:https://doi.org/10.15407/fm27.01.107

Cobalt based coatings as catalysts for methanol oxidation

T.A.Nenastina, M.V.Ved', N.D.Sakhnenko, I.Yu.Yermolenko, M.Volobuyev, V.O.Proskurina

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The cobalt based coatings with refractory metals (Mo, W, Zr) were deposited from pyrophosphate-citrate electrolytes in a pulsed mode. It has been shown that, with increasing current density, Co-Mo-W and Co-W-ZrO2 alloys are enriched in tungsten, grain sizes decrease, but a network of cracks appears on the surface of the Co-Mo-W coating. In the Co-Mo-ZrO2 coating, with increasing current density, the zirconium content increases due to molybdenum, and the surface is the most fractured and small-globular. The surface roughness parameters for Co-Mo-ZrO2 are one order of magnitude higher than those for Co-Mo-W. Cyclic voltammograms show that the Co-Mo-ZrO2 deposits are characterized by the highest stability under anodic polarization due to the inclusion of molybdenum and zirconium(IV) oxide in their composition. The kinetics of the methanol anodic oxidation on electrodes coated with cobalt alloys was studied, and the participation of intermediate metal oxides in oxygen transport was revealed. A significant increase in the anode current peak indicates a higher electro-catalytic activity of the zirconium-containing coatings among the studied alloys.

Keywords: 
cobalt based alloys, electrodeposition, pulse electrolysis, catalytic activity, methanol anodic oxidation.
References: 
 
1. I.S.Averkov, A.V.Baykov, L.S.Yanovskiy, V.M.Volokhov, Russ. Chem. Bull., 65, 2375 (2017).
https://doi.org/10.1007/s11172-016-1592-8
 
2. N.V.Korovin, A.S.Sedlov, Y.A.Slavnov et al., Therm. Eng,, 54, 137 (2007).
https://doi.org/10.1134/S0040601507020115
 
3. N.M.Mench, Fuel Cell Engines, John Wiley and Sons Inc., New Jersey (2008).
https://doi.org/10.1002/9780470209769
 
4. L.Liu, A.Corma, Chem. Rev., 118, 4981 (2018).
https://doi.org/10.1021/acs.chemrev.7b00776
 
5. J.Greeley, J.K.Norskov, M.Mavrikakis, Annu. Rev. Phys. Chem., 53, 319 (2002).
https://doi.org/10.1146/annurev.physchem.53.100301.131630
 
6. M.R.Tarasevich, V.A.Bogdanovskaya, in: Electrocatalysts for Low Temperature Fuel Cells: Fundamentals and Recent Trends, ed. by T.Maiyalagan, V.S.Saji, Wiley, VCH Verlag GmbH & Co. KGaA (2017).
 
7. M.Ved, M.Glushkova, N.Sakhnenko, Functional Materials, 20, 87 (2013).
https://doi.org/10.15407/fm20.01.087
 
8. N.D.Sakhnenko, M.V.Ved, Y.K.Hapon, T.A.Nenastina, Russ. J. Appl. Chem., 88, 1941 (2015).
https://doi.org/10.1134/S1070427215012006X
 
9. G.Yar-Mukhamedova, M.Ved', N.Sakhnenko, T.Nenastina, Appl. Surf. Sci., 445, 298 (2018).
https://doi.org/10.1016/j.apsusc.2018.03.171
 
10. M.V.Ved', M.A.Koziar, N.D.Sakhnenko, M.A.Slavkova, Functional Materials, 23, 420 (2016).
https://doi.org/10.15407/fm23.03.420
 
11. Y.S.Yapontseva, A.I.Dikusar, Y.S.Kyblanovskii, Surf. Eng. Appl. Electrochem., 50, 330 (2014).
https://doi.org/10.3103/S1068375514040139
 
12. V.VPoplavskii, T.S.Mishchenko, V.G.Matys, Tech. Phys., 55, 296 (2010).
https://doi.org/10.1134/S1063784210020222
 
13. A.E.Wendlandt, S.S.Stahl, Angew. Chem. Int. Ed. Engl., 54, 14638 (2015).
https://doi.org/10.1002/anie.201505017
 
14. J.Zhang, L.Shangguan, S.Shuang et al., Russ. J. Electrochem., 49, 888 (2013).
https://doi.org/10.1134/S1023193512120166
 
15. C.Song, M.Khanfar, P.Pickup, J. Appl. Electrochem., 36, 339 (2006).
https://doi.org/10.1007/s10800-005-9071-1
 
16. Y.Pirskyy, N.Murafa, O.Korduban et al., J. Appl. Electrochem., 44, 1193 (2014).
https://doi.org/10.1007/s10800-014-0732-9
 
17. V.Baklan, M.V.Uminsky, I.P.Kolesnikova, in: Fuel Cell Technologies: State and Perspectives., ed. by N.Sammes, A.Smirnova, O.Vasylyev, Springer, Dordrecht (2005).
 
18. J.Zeng, J.Y.Lee, J. Power Sources, 140, 268 (2005).
https://doi.org/10.1016/j.jpowsour.2004.08.022
 
19. J.Fei, L.Sun, C.Zhou et al., Nanoscale Res. Lett., 12, 23 (2017).
https://doi.org/10.1186/s11671-016-1777-y
 
20. M.V.Ved', N.D.Sakhnenko, I.Y.Yermolenko, T.A.Nenastina, in: Nanochemistry, Biotechnology, Nanomaterials, and their Applications, ed. by O.Fesenko, L.Yatsenko, Springer, Cham (2018).
 
21. M.V.Ved', M.D.Sakhnenko, O.V.Bohoyavlens'ka, T.O.Nenastina, Mater. Sci., 44, 79 (2008).
https://doi.org/10.1007/s11003-008-9046-6
 
22. G.Yar-Mukhamedova, N.Sakhnenko, M.Ved' et al., IOP Conf. Ser.: Mater. Sci. Engin., 213 (2017).
https://doi.org/10.1088/1757-899X/213/1/012020
 
23. M.V.Ved', M.D.Sakhnenko, H.V.Karakurkchi et al., Mater. Sci., 51, 701 (2016).
https://doi.org/10.1007/s11003-016-9893-5
 
24. I.Y.Yermolenko, M.V.Ved', N.D.Sakhnenko, Y.I.Sachanova, Nanoscale Res. Lett., 12, 352 (2017).
https://doi.org/10.1186/s11671-017-2128-3
 
25. D.Thomas, Z.Rasheed, J.S.Jagan, K.G.Kumar, J. Food Sci. Technol., 52, 6719 (2015).
https://doi.org/10.1007/s13197-015-1796-1
 
26. P.N.S.Casciano, L.Ramon, R.L.Benevides, R.A.C.Santana, J. Alloys Compd., 723, 164 (2016).
https://doi.org/10.1016/j.jallcom.2017.06.282
 
27. V.S.Kublanovsky, Y.S.Yapontseva, Electrocatal, 5, 372 (2014).
https://doi.org/10.1007/s12678-014-0197-y
 
28. M.Ved, N.Sakhnenko, T.Bairachnaya, N.Tkachenko, Functional Materials, 15, 613 (2008).
 
29. I.Y.Yermolenko, M.V.Ved', N.D.Sakhnenko et al., Functional Materials, 25. 274 (2018).
 
30. R.Yakushin, K.Kuterbekov, D.Grafov et al., Safety in Technosphere, 3, 40 (2015).
https://doi.org/10.12737/11880
 
31. V.Shemet, J.Piron-Abellan, W.Quadakkers, L.Singheiser, in: Fuel Cell Technologies: State and Perspectives, ed. by N.Sammes, A.Smirnova, O.Vasylyev, Springer, Dordrecht (2005).
 
 

Current number: