Funct. Mater. 2020; 27 (1): 117-124.

doi:https://doi.org/10.15407/fm27.01.117

Kinetics of structure transformation in pulsed plasma high-Cr coatings under post-heat treatment

B.V.Efremenko1, Yu.G.Chabak1, V.G.Efremenko1, V.I.Fedun1, T.V.Pastukhova1, Hossam Ahmed Halfa2, A.Yu.Azarkhov1, V.M.Vlasovets3

1Priazovskyi State Technical University, Universitetska Str. 7, 8755 Mariupol, Ukraine
2Central Metallurgical Research and Development Institute, 1 Elfelezat Str., Eltebbin, 12422 Helwan, Cairo, Egypt
3Kharkiv P.Vasylenko National Technical University of Agriculture, 44 Alchevskikh Str., 61022 Kharkiv, Ukraine

Abstract: 

The kinetics of the change in the microstructure and hardness of the coating obtained by pulse-plasma deposition of 28 % Cr cast iron during consequent heat treatment was investigated. After deposition, the coating is found to have a non-equilibrium structure of supersaturated gamma and alpha solid solutions without eutectic carbides. Holding at 950°C for up to 120 min ensures the phase transformations in the coating, which are associated with precipitation of carbides M7C3 and M23C6 followed by the transformation of depleted austenite into martensite. This results in a 2.5-fold increase in the microhardness of the coating. It was established that the carbide precipitation proceeds in decelerating kinetics with a maximum precipitation rate during the first 5-15 min holding and with the consequent formation of about 63 vol. % of carbides after 120 min holding. The carbides are found to be depleted with chromium and enriched with iron due to the saturation of the plasma with carbon released during erosion of the inner wall of the plasma accelerator.

Keywords: 
pulsed plasma deposition, coating, carbide precipitation, post-heat treatment microhardness.
References: 
1. O.V.Sobol', Osman Dur, A.A.Postelnyk, Zh.V.Kraievska, Functional Materials, 26, 310 (2019).
 
2. M.O.Vasyliev, B.M.Mordyuk, S.I.Sidorenko et al., Metallofiz. Noveishie Tekhnol., 38, 545 (2016).
https://doi.org/10.15407/mfint.38.04.0545
 
3. V.Pidkova, I.Brodnikovska, Z.Duriagina, V.Petrovskyy, Functional Materials, 22, 34 (2015).
https://doi.org/10.15407/fm22.01.034
 
4. R.K.Nitesh Vashishtha, S.G.Khatirkar, Sapat. Tribol. Int., 105, 55 (2017).
https://doi.org/10.1016/j.triboint.2016.09.025
 
5. V.G.Efremenko, K.Shimizu, T.V.Pastukhova et al., J. Frict. Wear, 38, 58 (2017).
https://doi.org/10.3103/S1068366617010056
 
6. E.C.Dell'Orto, S.Caldirola, A.Sassella et al., Appl. Surf. Sci., 425, 407 (2017).
https://doi.org/10.1016/j.apsusc.2017.07.059
 
7. B.Vamsi Krishna, A.Bandyopadhyay, Mater. Des., 30, 1490 (2009).
https://doi.org/10.1016/j.matdes.2008.08.003
 
8. M.Rafiei, H.Ghayour, H.Mostaan, M.Zavaran Hosseini, J. Mater. Proces. Techn., 266, 569 (2019).
https://doi.org/10.1016/j.jmatprotec.2018.11.037
 
9. C.Zhao, X.Xing, J.Guo et al., Appl. Surf. Sci., 494, 600 (2019).
https://doi.org/10.1016/j.apsusc.2019.07.209
 
10. A.Anishchenko, V.Kukhar, V.Artiukh, A.Olga, MATEC Web Conf., 239, 06006 (2018).
https://doi.org/10.1051/matecconf/201823906006
 
11. V.G.Efremenko, Yu.G.Chabak, A.Lekatou et al., Surf. Coat. Technol., 304, 293 (2016).
https://doi.org/10.1016/j.surfcoat.2016.07.016
 
12. Yu.G.Chabak, V.I.Fedun, K.Shimizu et al., Probl. At. Sci. Technol., 104, 100 (2016).
 
13. I.Hemmati, V.Ocelik, J.T.M.De Hosson, J. Mater. Sci., 46, 3405 (2011).
https://doi.org/10.1007/s10853-010-5229-2
 
14. M.Fenech, B.Mallia, M.Grech, J.C.Betts, J. Mater. Sci., 48, 2224 (2013).
https://doi.org/10.1007/s10853-012-6998-6
 
15. V.M.Beresnev, S.A.Klimenko, O.V.Sobol' et al., J. Superhard Mater., 39, 172 (2017).
https://doi.org/10.3103/S1063457617030042
 
16. V.G.Efremenko, Yu.G.Chabak, K.Shimizu et al., Mater. Des., 126, 278 (2017).
https://doi.org/10.1016/j.matdes.2017.04.022
 
17. E.V.Sukhovaya, J. Superhard Mater., 35, 277 (2013).
https://doi.org/10.3103/S106345761305002X
 
18. S.S.M.Tavares, C.R.Rodrigues, J.M.Pardal et al., Mater. Res. (Sao Carlos, Braz.), 17, 1335 (2014).
 
19. X.-J.Di, X.-Q.Liu, C.-X. Chen et al., Acta Metall. Sin. (Engl. Lett.), 29, 1136 (2016).
https://doi.org/10.1007/s40195-016-0504-0
 
20. Yu.G.Chabak, V.G.Efremenko, K.Shimizu et al., J. Mater. Eng. Perform., 27, 379 (2018).
https://doi.org/10.1007/s11665-017-3102-z
 
21. M.Gelfi, A.Pola, L.Girelli et al., Wear, 428-429, 438 (2019).
https://doi.org/10.1016/j.wear.2019.03.011
 
22. Yu.E.Koljada, V.I.Fedun, Probl. At. Sci. Technol., 4, 260 (2008).
 
23. Yu.E.Kolyada, V.I.Fedun, I.N.Onishchenko, E.A.Kornilov, Instrum. Exp. Tech., 44, 213 (2001).
https://doi.org/10.1023/A:1017567020321
 
24. Y.E.Kolyada, V.I.Fedun, V.I.Tyutyunnikov et al., Probl. At., Sci. Technol., 4, 297 (2013).
 
25. Yu.G.Chabak, V.G.Efremenko, Metallofiz. Noveishie Tekhnol., 34, 1205 (2012).
 
26. Sun Jing, Hao Yu, Mater. Sci. Eng., A, 586, 100 (2013).
 
27. Perspectives in Powder Metallurgy: Fundamentals, Methods and Applications, ed. by H.H.Hausner, K.H.Roll, P.K.Johnson, vol.3: Iron Powder Metallurgy, Springer-Science and Business Media Dordrecht (1998).
 
28. Da Li, Ligang Liu, Yunkun Zhang et al., Mater. Des. 30, 340 (2009).
 
29. Yu.G.Chabak, V.I.Fedun, T.V.Pastukhova et al., Probl. At. Sci. Technol., 110, 97 (2017).
 
30. A.Wiengmoon, T.Chairuangsri, J.T.H.Pearce, ISIJ Int., 44, 396 (2004).
https://doi.org/10.2355/isijinternational.44.396
 
31. X.H.Tang, Lei Li, B.Hinckley, Tribol. Lett., 58, 44 (2015).
https://doi.org/10.1007/s11249-015-0522-5
 
32. E.S.Vasyukova, K.Yu.Okishev, A.S.Sozykina et al., Solid State Phenom., 265, 1005 (2017).
https://doi.org/10.4028/www.scientific.net/SSP.265.1005
 
33. A.Gonzalez-Pocino, F.Alvarez-Antolin, J. Asensio-Lozano, Metals-Basel, 9, 627 (2019).
https://doi.org/10.3390/met9060627
 
 
 

Current number: