Funct. Mater. 2020; 27 (1): 136-139.

doi:https://doi.org/10.15407/fm27.01.136

The study of the effect of polyoxadiazole fiber on the thermophysical properties of polymer composite materials based on phenylone C-1

O.I.Burya, A.-M.V.Tomina

Dniprovsk State Technical University, 2 Dneprostroevskaya St., 51918 Kamyanske, Ukraine

Abstract: 

The impact of the content of heat-resistant organic arcelon fiber on the thermophysical properties of aromatic polyamide phenylone C-1 in the temperature range of 323 to 548 K is considered in the article. It has been determined that the introduction of 5-10 wt % of the filler leads to the positive effect. It contributes to the increase of coefficients of thermal conductivity and thermal diffusivity 1.5-2 and 1.8-2.9 times respectively. It has been shown that with the same content of the filler, we can observe the reduction of specific heat discontinuity and temperature coefficient of entropy by 40-65 % and 23-65 % respectively in the comparison with phenylone. This is due to the interaction of the filler with a polymer matrix: structure formation at the "polymer-filler" interface by straightening and aggregation of the part of phenylone macromolecules in the interfacial layer.

Keywords: 
fibrous polymer composite materials, polyamide phenylone, organic fiber, arcelon, heat capacity, thermal conductivity, thermaldiffusivity.
References: 
1. E.T.Goryacheva, J. Condensed Matter Physics, 2 (2012).
 
2. A.V.Solomtseva, V.M.Fadeeva, G.F.Zhelezina, J. Aviation Mater. Techn., 2 (2016).
 
3. A.A.Druzhinin, V.Y.Yerokhov, S.I.Nichkalo et al., Functional Materials, 4, 25 (2018).
 
4. I.H.Dobrotvor, P.D.Stukhlyak, A.V.Buketov, J. Mater. Scien., 45, 4 (2009).
https://doi.org/10.1007/s11003-010-9217-0
 
5. Yu.K.Mashkov, O.V.Kropotin, V.A.Yegorova et al., J. Dynamics of Systems, Mechanisms and Machines, 2 (2012).
 
6. A.I.Burya, A.-M.V.Tomina, E.N.Volnyanko et al., J. Polymer Mater. Techn., 4, 4 (2018).
https://doi.org/10.32864/polymmattech-2018-4-4-72-77
 
7. V.M.Raskatov, Mashinostroitel'nye Materialy: Kratkij Spravochnik, Mashinostroenie, Moskva (1965) [in Russian].
 
8. N.G.Cherkasova, A.I.Burja, Reaktoplasty, Haoticheski Armirovannye Himicheskimi Voloknami, IMA-pres., Dnepropetrovsk (2011) [in Russian].
 
9. Ju.S.Lipatov, Fizicheskaja Himija Napolnennyh Polimerov, Himija, Moskva (1977).
 
10. I.I.Piven', N.A.Grechanaja, I.I.Chernobyl'skij, Teplofizicheskie Svojstva Polimernyh Materialov: Spravochnik, Vysshaja Shkola, Kiev (1976) [in Russian].
 
11. C.Propescu, Z.Tucsnak, E.Segal, J. Thermo-chemical, 164 (1990).
https://doi.org/10.1016/0040-6031(90)80456-9
 
12. A.Gordog, R.Ford, Sputnik khimika, Mir, Moskva, 1970 [in Russian].
 
13. V.V.Voropaev, V.A.Struk, A.A.Skaskevich, in: XXXII Ezhegodnoj Mezhdunarodnoj Konferensii Kompozicionnye Materialy v Promyshlennosti, Jalta, Ukraina (2012) [in Russian].

Current number: