Funct. Mater. 2020; 27 (1): 29-34.

doi:https://doi.org/10.15407/fm27.01.29

Influence of current density of anodizing on the geometric characteristics of nanostructures synthesized on the surface of semiconductors of A3B5 group and silicon

Ya.O.Sychikova, I.T.Bogdanov, S.S.Kovachov

Berdyansk State Pedagogical University, 4 Schmidt Str., 71100 Berdyansk, Ukraine

Abstract: 

The correlation between the current density of anodizing semiconductors and the morphological characteristics of the formed nanostructures is investigated. The studies were carried out for semiconductors of the A3B5 group (InP, GaP, GaAs) and Si. Porous nanostructured layers were obtained by electrochemical etching in a solution of hydrofluoric acid at various current densities. As a result of the study, it was found that the current density affects the pore diameter, surface and bulk porosity and the thickness of the porous layer. The critical points of current density characterizing the beginning and end of active pore formation on the surface of semiconductors are determined.

Keywords: 
electrochemical etching, current density, nanostructures, porous semiconductors, pore diameter, porosity, thickness of porous layer.
References: 

 
1. S.Vambol, I.Bogdanov, V.Vambol et al., East-Eur. J.Enterp. Techn., 3/5, 37 (2017).
https://doi.org/10.15587/1729-4061.2017.104039
 
2. Y.A.Suchikova, V.V.Kidalov, A.A.Konovalenko, G.A.Sukach, Proc. ECS Transactions, 25 (2010), а.59.
 
3. J.Lawrence, K.L.Pey, P.S.Lee, Proc. Advances Laser Mater. Proces., 2 (2018), p.299.
 
4. J.Lawrence, L.Li.in: Proc. Adv. Laser Mater. Proces., 2 (2018), p.23.
 
5. R.S.Dubey, Nanosci. Nanoengin., 1, 36 (2013).
 
6. Y.Suchikova, East-Eur. J.Enterp. Techn., 6/5, 26 (2016).
 
7. P.Dwivedi, Sens. Actuat. B: Chemical, 249, 602 (2017).
https://doi.org/10.1016/j.snb.2017.03.154
 
8. I.Tiginyanu et al., ECS J.Solid State Scien. Techn. 4, 3 (2015).
https://doi.org/10.1149/2.0011503jss
 
9. Y.Bioud et al., in: Proc. Porous Semiconductors-Science and Technology (PSST) and related Conferences, (2016).
 
10. N.Quill et al., ECS Transactions, 75, 29 (2017).
https://doi.org/10.1149/07540.0029ecst
 
11. Y.A.Suchikova, V.V.Kidalov, G.A.Sukach, J. Nano- Electr.Phys., 1, 111 (2009).
 
12. T.Huang et al., Materials, 10, 357 (2017).
https://doi.org/10.3390/ma10040357
 
13. S.Yana, Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (Book Chapter), 283 (2016).
 
14. S.Vambol, I.Bogdanov, V.Vambol et al., East-Eur. J.Enterp. Techn., 6/5(90), 22 (2017).
https://doi.org/10.15587/1729-4061.2017.118725
 
15. A.S.Lazarenko, J.Nano-Electr. Phys., 3, 59 (2011).
 
16. E.Monaico, I.Tiginyanu, O.Volciuc et al., Electrochem. Commun., 47, 29 (2014).
https://doi.org/10.1016/j.elecom.2014.07.015
 
17. H.Mammar, A.Benmansour, F.Kerroumi, J. Surf. Sci. Techn., 33, 3 (2018).
 
18. Y.A.Suchikova, V.V.Kidalov, G.A.Sukach, Functional Materials, 17, 131 (2010).
 
19. M.Verdier, K.Termentzidis, D.Lacroix, Submicron Porous Materials. Springer, Cham, 253 (2017).
https://doi.org/10.1007/978-3-319-53035-2_9
 
20. V.Serga et al., Chemija, 29, 2 (2018).
https://doi.org/10.6001/chemija.v29i2.3713
 
21. S.Bellucci et al., Radiat. Meas., 42, 708 (2007).
https://doi.org/10.1016/j.radmeas.2007.01.072
 
22. Y Tang, S.Chen, S.Mu et al., ACS Appl. Mater. Interfaces, 8, 9721 (2016).
https://doi.org/10.1021/acsami.6b01268
 
23. X.Geng, Y.Zhang, Y.Han et al., Nano Letters, 17, 1825 (2017).
https://doi.org/10.1021/acs.nanolett.6b05134
 
24. G.H.Amoabediny, A.Naderi, J.Malakootikhah et al., J. Phys.: Conf., 170, 012037 (2009).
https://doi.org/10.1088/1742-6596/170/1/012037

Current number: