Funct. Mater. 2020; 27 (1): 39-45.

doi:https://doi.org/10.15407/fm27.01.39

Glass-ceramic matrices based on borosilicate and phosphate materials for the immobilization of radioactive waste

S.Y.Sayenko, Y.O.Svitlychnyi, V.A.Shkuropatenko, A.V.Zykova, O.G.Ledovska, L.M.Ledovska, G.O.Kholomyeyev, A.G.Myronova, M.O.Odeychuk

National Science Center "Kharkiv Institute of Physics and Technology", 1 Academichna Str., 61108 Kharkiv, Ukraine

Abstract: 

The parameters for manufacturing of glass-ceramic materials based on borosilicate and phosphate compounds for further application as protective matrices for the immobilization of radioactive waste are presented in study. The chemical and phase compositions, microstructure and physic-mechanical properties of glass-ceramic samples were analyzed. Results shown, that obtained materials are characterized by homogeneous structure and high density, compressive strength and thermal shock resistance parameters, in accordance with the requirements to materials for radioactive waste immobilization. In addition, the influence of the temperature of glass heat treatment on the volatility of cesium compounds was analyzed. It was shown that in samples after treatment at 1150°C the amount of cesium in the glass ceramic samples was practically unchanged, in comparison with the amount of cesium in the initial mixture.

Keywords: 
radioactive waste immobilization, glass-ceramic materials, vitrification, borosilicate, phosphate compounds, phase composition, thermal shock resistance.
References: 
1. N.P.Laverov, B.I.Omelyanenko, S.B.Udintsev et al., Geology of Ore Deposits, 55, 87 (2013).
https://doi.org/10.1134/S1075701513020037
 
2. W.Donald, Glass Technol., 48, 155 (2007).
 
3. S.V.Stefanovskiy, T.N.Lashenova, A.G.Ptashkin et al., Occupational Medicine and Industrial Ecology, 2, 35 (2006).
 
4. S.E.Lin, Y.R.Cheng, W.C.J.Wei, J. Eur. Ceram. Soc., 31, 1975 (2011).
https://doi.org/10.1016/j.jeurceramsoc.2011.04.017
 
5. N.P.Laverov, B.I.Omelyanenko, S.B.Udintsev et al., Geology of Ore Deposits, 54, 3 (2012).
https://doi.org/10.1134/S1075701512010059
 
6. R.K.Brow, J. Non-Cryst. Solids, 263, 1 (2000).
https://doi.org/10.1016/S0022-3093(99)00620-1
 
7. C.W.Kim, D.E.Day, J. Non-Cryst. Solids, 331, 20 (2003).
https://doi.org/10.1016/j.jnoncrysol.2003.08.070
 
8. O.M.Hannant, P.A.Bingham, R.J.Hand, S.D.Forder. J. Glass Sci. Technol., 49, 27 (2008).
 
9. A.A.Cabral, A.D.Cardoso, E.D.Zanotto. J. Non-Cryst. Solids, 320, 1 (2003).
https://doi.org/10.1016/S0022-3093(03)00079-6
 
10. G.K.Marasinghe, M.Karabulut, X.Fang et al., Ceramic Trans., Environ. Iss. & Waste Management Techn., 6, 361 (2001).
 
11. S.V.Gabelkov, D.S.Logvinkov, S.Yu.Sayenko et al., Voprosy Atomnoi Nauki i Tehniki, 5, 172 (2003).
 
12. S.Yu.Sayenko, E.A.Svitlychnyi, O.G.Ledovska et al., Voprosy Atomnoi Nauki i Tehniki, 1, 171 (2016).
 
13. A.Zykova, B.Warcholinski, A.Gilewicz et al., Functional Materials, 21, 403 (2014).
https://doi.org/10.15407/fm21.04.403
 
14. S.Yu.Sayenko, V.A.Shkuropatenko, R.V.Tarasov et al., in: Overview, National Science Center "Kharkiv Institute of Physics and Technology", Ukraine (2016), p.48.
 
15. A.S.Wagh, S.Yu.Sayenko, V.A.Shkuropatenko et al., Hazardous Mater., 302, 241 (2016).
https://doi.org/10.1016/j.jhazmat.2015.09.049
 
16. V.A.Shkuropatenko, East European J. Phys., 3, 49 (2016).
 
17. L.M.Sedokov, A.G.Martynenko, G.A.Simonenko et al., Zavodskaya Laboratoriya, 43, 98 (1977).
 
18. Radioactive Waste Management during Operation of NPP Energoatom (2010) [in Russian]. https://docplayer.ru/44526643-Obrashchenie-s-radioaktivnymi-othodami-pri- ekspluatacii-aes-gp-naek-energoatom.htm

Current number: