Funct. Mater. 2020; 27 (1): 46-53.
Indium antomonide whiskers under strain for sensor applications
Lviv Polytechnic National University, 12 St.Bandera Str., 79013 Lviv, Ukraine
The present paper aims to study an effect of compression strain (up to ε = 3·10-4) on behavior of transverse magnetoresistance of InSb whiskers at cryogenic temperatures under high magnetic fields up to 10 T. The strained and unstrained InSb whiskers with the concentration of charge carriers from 6·1016 to 6·1017 cm-3 in the vicinity to metal-insulator transition are under consideration. The effect of a giant magnetoresistance of 700 % at a temperature of 4.2 K was established for the InSb whiskers with carrier concentration of 2·1017 cm-3. The effect was used for the design of magnetic field sensors with a magnetoresistive principle of action. The whiskers with carrier concentration 6·1016 cm-3 due to a high gauge factor of about 350 was shown might be used in piezoresistance sensors able to work in harsh operating conditions in a temperature range of 4.2 to 50 K.
1. Zutic, J.Fabian, S.Das Sarma, Rev. Mod. Phys., 76, 323 (2004). https://doi.org/10.1103/ RevModPhys.76.323
2. I.Maryamova, A.Druzhinin, E.Lavitska et al., Sensors and Actuators, A85, 153 (2000). https://doi.org/10.1016/S0924-4247(00)00376-9
3. I.Khytruk, A.Druzhinin, I.Ostrovskii et al., Nanoscale Res. Lett., 12, 156 (2017). https://doi.org/10.1186/s11671-017-1923-1
4. A.Druzhinin, I.Ostrovskii, Yu.Khoverko, N.Liakh-Kaguy, Low Temp. Phys., 42, 453 (2016). https://doi.org/10.1063/ 1.4954778
5. A.Druzhinin, I.Ostrovskii, Yu.Khoverko, N.Liakh-Kaguy, Low Temp. Phys., 43, 692 (2017). https://doi.org/10.1063/ 1.4985975
6. S.A.Nepijko, D.Kutnyakhov, L.V.Odnodvorets et al., J. Nanopart. Res., 13, 6263 (2011). https://doi.org/10.1007/s11051-011-0560-3
7. S.Mangin, D.Ravelosona, J.A.Katine et al., Nat. Mater., 5, 210 (2006). https://doi.org/ 10.1038/nmat1595
8. L.Berger, Phys. Rev. B, 54, 9353 (1996). https://doi.org/10.1103/PhysRevB.54.9353
9. J.C.Slonczewski, J. Magn. Magn. Mater., 159, L1 (1996). https://doi.org/10.1016/0304- 8853(96)00062-5
10. X.Waintal, E.B.Myers, P.W.Brouwer, D.C.Ralph, Phys. Rev. B, 62, 12317 (2000). https://doi.org/10.1103/PhysRevB.62.12317
11. M.D.Stiles, A.Zangwill, Phys. Rev. B, 66, 014407 (2002). https://doi.org/10.1103/PhysRevB.66.014407
12. S.O.Volkov, O.P.Tkach, L.V. Odnodvorets, Yu.V.Khyzhnya, J. Nano- Electronic Phys., 8, 03030 (2016).https://doi.org/10.21272/jnep.8(3).03030
13. A.Druzhinin, I.Ostrovskii, Yu.Khoverko et al., Mater. Res. Bulletin, 72, 324 (2015). https://doi.org/10.1016/j.materresbull.2015.08.016
14. A.Druzhinin, I.Ostrovskii, Yu.Khoverko et al., Low Temp. Phys., 44, 1189 (2018). https://doi.org/10.1063/1.5060974
15. H.Murakawa, M.S.Bahramy, M.Tokunaga et al., Science, 342, 1490 (2013). https://doi.org/10.1126/science.1242247
16. M.Veldhorst, M.Snelder, M.Hoek et al., Phys. Status Solidi, 7, 26 (2013). https://doi.org/10.1002/pssr.201206408
17. A.Nikolaeva, L.Konopko, T.Huberc et al., Surf. Engin. Appl. Electrochem., 50, 57 (2014). https://doi.org/10.3103/ S1068375514010128
18. A.I.Veinger, A.G.Zabrodskii, T.V.Tisnek, Fizika i Tekhnika Polyprovodnika, 34, 774 (2000). https://journals.ioffe.ru/articles/37181
19. K.L.Litvinenko, L.Nikzad, C.R.Pidgeon et al., Phys. Rev. B, 77, 033204 (2008). https://doi.org/10.1103/PhysRevB.77.033204
20. O.V.Naumova, V.P.Popov, A.I.Aseev et al., in: Proc. of EuroSOI Intern. Conf., Goteborg, p.69. (2009), https://doi.org/ 10.1007/978-3-642-15868-1
21. H.Y.Gunel, I.E.Batov, H.Hardtdegen et al., J. Appl. Phys., 112, 034316 (2012). https://doi.org/10.1063/1.4745024
22. C.Claeys, E.Simon, ed. by P.L.F. Hemment et al., Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, Kluwer Academic Publ. (2000). https://doi.org/ 10.1007/978-94-011-4261-8_23
23. A.Barlian, S.Park, V.Mukundan, B.Pruitt, Sens Actuators A, 134, 77 (2007). https://doi.org/10.1016/j.sna.2006.04.035