Funct. Mater. 2020; 27 (1): 67-74.

doi:https://doi.org/10.15407/fm27.01.67

Transport properties of the bismuth telluride thin films with different stoichiometry in the temperature range 77-300 K

E.I.Rogacheva, K.V.Novak, A.N.Doroshenko, O.N.Nashchekina, A.V.Budnik

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The objects of the present study are thin films with thicknesses d = 45-620 nm prepared by thermal evaporation in vacuum from a single source, using undoped p- and n-type Bi2Te3 polycrystals with different stoichiometry (60.0 and 62.8 at. % Te, respectively) as a charge, and subsequent condensation on glass substrates at 500 K. The temperature dependences of the Hall coefficient RH, electrical conductivity σ, and Hall charge carrier mobility μH of thin films were obtained in the range 77-300 K. It was found that the films had the same type of conductivity as the initial polycrystals in the entire temperature range studied and, like in the initial crystals, σ and μH decreased with increasing temperature. The exponents ν in the μH(T) dependences for the bulk polycrystals were larger than those for the films and increased with increasing d. In contrast to the p-type bulk polycrystals, RH of the p-type films decreased under increasing temperature. In the n-type Bi2Te3, RH decreased with temperature for both thin films and bulk crystals, however, the character of the RH(T) dependences for the crystals and films differed. The decrease in RH with temperature before the range of intrinsic conductivity in all thin films is attributed to the existence of donor and acceptor defect states.

Keywords: 
bismuth telluride, thin film, stoichiometry, electrical conductivity, Hall coefficient, charge carrier mobility.
References: 
1. Thermoelectrics Handbook: Macro to Nano, ed. by D.M.Rowe, CRC Press, Taylor & Francis Group, Boca Raton (2005). doi.org/10.1201/-9781420038903
 
2. Materials Aspect of Thermoelectricity, ed. by C.Uher, CRC Press, Boca Raton (2016), https://doi.org/10.1201/9781315197029.
https://doi.org/10.1201/9781315197029
 
3. B.M.Goltsman, V.A.Kudinov, I.A.Smirnov, Semiconducting Thermoelectric Materials based on Bi2Te3, Nauka, Moscow (1972) [in Russian].
 
4. I.T.Witting, Th.C.Chasapis, F.Ricci et al., Adv. Electron. Mater., (2019). DOI: 10.1002/aelm.201800904.
https://doi.org/10.1002/aelm.201800904
 
5. Z.Ren, Y.Lan, Q.Zhang, Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems, 1st Ed.: Series in Materials Science and Engineering, CRC Press (2017).
https://doi.org/10.1201/9781315153766
 
6. M.S.Dresselhaus, G.Chen, M.Y.Tang et al., Adv. Mater, 19, 1043 (2007). DOI:10.1002/adma.200600527
https://doi.org/10.1002/adma.200600527
 
7. E.Ashalley, H.Chen, X.Tong et al., Frontiers Mater. Sci., 9, 103 (2015).
https://doi.org/10.1007/s11706-015-0285-9
 
DOI: 10.1007/s11706-015-0285-9
https://doi.org/10.1007/s11706-015-0285-9
 
8. D.Culcer, Physica E. 44, 860 (2012). DOI: http://dx.doi.org/10.1016/j.physe.2011.11.003.
https://doi.org/10.1016/j.physe.2011.11.003
 
9. N.Xu, Y.Xu, Jia Zhu, Quant. Mater., 51, 2 (2017). www.nature.com/npjquantmats, DOI: 10.1038/s41535-017-0054-3.
https://doi.org/10.1038/s41535-017-0054-3
 
10. E.I.Rogacheva, A.V.Budnik, O.S.Vodorez, J. Thermoelectricity, 6, 48 (2014).
 
11. E.I.Rogacheva, K.V.Novak, A.N.Doroshenko et al., J. Nano- Electr. Phys., 5, 04001 (2019).
 
12. A.V.Budnik, E.I.Rogacheva, V.I.Pinegin et al., J. Electron. Mater., 42, 1324 (2013).
https://doi.org/10.1007/s11664-012-2439-1
 
13. A.V.Budnik, E.I.Rogacheva, A.Yu.Sipatov, J. Thermoelectricity, 4, 19 (2013).
 
1. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Thin Solid Films, 594, 109 (2015).
https://doi.org/10.1016/j.tsf.2015.10.023
 
15. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Appl. Phys. Lett., 106, 053103 (2015).
https://doi.org/10.1063/1.4907319
 
16. E.I.Rogacheva, A.V.Budnik, A.G.Fedorov et al., J. Thermoelectricity, 2, 5 (2015).
 
17. E.I.Rogacheva, O.N.Nashchekina, A.V.Budnik et al., Thin Solid Films, 612, 128 (2016).
https://doi.org/10.1016/j.tsf.2016.05.046
 
18. C.B.Satterthwaite, R.W.Ure, Phys. Rev., 108, 1164 (1957).
https://doi.org/10.1103/PhysRev.108.1164
 
19. J.Black, E.M.Conwell, L.Seigle, J. Phys. Chem. Solids, 2, 240 (1957).
https://doi.org/10.1016/0022-3697(57)90090-2
 
20. J.R.Drabble, R.D.Groves, R.Wolfe, Proc. Phys. Soc., 71, 430 (1958).
https://doi.org/10.1088/0370-1328/71/3/317
 
21. J.R.Drabble, Proc. Phys. Soc., 72, 380 (1958).
https://doi.org/10.1088/0370-1328/72/3/308
 
22. R.Mansfield, W.Williams, Proc. Phys. Soc., 72, 733 (1958).
https://doi.org/10.1088/0370-1328/72/5/307
 
23. H.J.Goldsmid, Proc. Phys. Soc., 71, 663 (1958).
https://doi.org/10.1088/0370-1328/71/4/312
 
24. B.Yates, J. Electr. Control, 6, 26 (1959).
https://doi.org/10.1080/00207215908937125
 
25. C.H.Champness, A.L.Kipling, Can. J. Phys., 44, 769 (1966).
https://doi.org/10.1139/p66-066
 
26. C.H.Champness, A.L.Kipling, J. Phys. Chem. Solids, 27, 1409 (1966).
https://doi.org/10.1016/0022-3697(66)90136-3
 
27. V.A.Kulbachinski, X.Osaku, I.Miahara, K.Funagay, ZhETF 124, 1358 (2003).
 
28. Z.Zeng, P.Yang, Zh. Hu, Appl. Surf. Sci., 268, 472 (2013).
https://doi.org/10.1016/j.apsusc.2012.12.134
 
29. M.Goto, M.Sasaki, Y.Xu et al., Appl. Surf. Scien., 407, 405 (2019).
https://doi.org/10.1016/j.apsusc.2017.02.187
 

Current number: