Funct. Mater. 2020; 27 (1): 79-86.

doi:https://doi.org/10.15407/fm27.01.79

Structure, mechanical characteristics, oxidation and cavitation resistance of Fe-Cr-Al based alloys

I.V.Kolodiy, V.A.Belous, M.A.Bortnitskaya, R.L.Vasilenko, V.N.Voyevodin, V.I.Kovalenko, A.S.Kuprin, V.G.Marinin, V.D.Ovcharenko, G.Y.Rostova, P.I.Stoev, M.A.Tikhonovsky, G.N.Tolmachova, A.S.Tortika

National Science Center "Kharkiv Institute of Physics and Technology", 1 Academichna Str., 61108 Kharkiv, Ukraine

Abstract: 

Fe-Cr-Al alloys are considered as one of the possible replacement of zirconium alloys for nuclear fuel claddings. The microstructure, phase composition, oxidation resistance, mechanical properties and cavitation resistance of one commercial and four experimental Fe-Cr-Al alloys doped with yttrium, molybdenum and zirconium are studied in this work. All alloys under study have the BCC phase as the main. Alloying with ~ 2 % of zirconium results in the formation of microstructure consisting of the matrix phase grains and intergranular eutectic: BCC matrix phase + FCC Laves phase ZrFe2. The highest resistance to oxidation in air at temperature of 1300°C is observed in the alloy doped with yttrium and molybdenum. Microhardness, nanohardness and yield strength have close values for all alloys except for the Zr-doped alloy which has significantly higher values of these parameters. The Fe-Cr-Al alloy doped by Y, Mo and Zr is the most cavitation resistant one.

Keywords: 
Fe-Cr-Al alloy, structure, oxidation resistance, cavitation, phase composition.
References: 
1. K.A.Terrani. J. Nucl. Mater., 501, 13 (2018).
https://doi.org/10.1016/j.jnucmat.2017.12.043
 
2. Z.Duan, H.Yang, Y.Satoh et al., Nucl. Eng. Des., 316, 131 (2017).
https://doi.org/10.1016/j.nucengdes.2017.02.031
 
3. K.A.Terrani, S.J.Zinkle, L.L.Snead, J. Nucl. Mater., 448, 420 (2014).
https://doi.org/10.1016/j.jnucmat.2013.06.041
 
4. B.A.Pint, K.A.Terrani, M.P.Brady et al., J. Nucl. Mater., 440, 420 (2013).
https://doi.org/10.1016/j.jnucmat.2013.05.047
 
5. K.A.Terrani, B.A.Pint, K.A.Unocic et al., J. Nucl. Mater., 479, 36 (2016).
https://doi.org/10.1016/j.jnucmat.2016.06.047
 
6. B.A.Pint, K.A.Terrani, Y.Yamamoto, L.L.Snead, Metall. Mater. Trans. E, 2, 190 (2015).
https://doi.org/10.1007/s40553-015-0056-7
 
7. X.Wu, T.Kozlowski, J.D.Hales, Ann. Nucl. Energy, 85, 763 (2015).
https://doi.org/10.1016/j.anucene.2015.06.032
 
8. K.G.Field, X.Hu, K.C.Littrell et al., J. Nucl. Mater., 465, 746 (2015).
https://doi.org/10.1016/j.jnucmat.2015.06.023
 
9. Y.Wang, W.Zhou, Q.Wen et al., Surf. Coat. Tech., 344, 141 (2018).
https://doi.org/10.1016/j.surfcoat.2018.03.016
 
10. Hyung-Kyu Kim, Young-Ho Lee, Sung-Pil Heo, Tribol. Int., 39, 1305 (2006).
https://doi.org/10.1016/j.triboint.2006.02.027
 
11. Young-Ho Lee, Thak Sang Byun, J. Nucl. Mater., 465, 857 (2015).
https://doi.org/10.1016/j.jnucmat.2015.05.017
 
12. K.Edsinger, The Nuclear News, 40 (2010).
 
13. W.C.Oliver, G.M.Pharr, J. Mater. Res., 7, 1564 (1992).
https://doi.org/10.1557/JMR.1992.1564
 
14. V.G.Marinin, V.I.Kovalenko, N.S.Lomino et al., in: Proc. Intern. Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, v. 2, (2000), p.567.
 
15. GOST 10994-74. Precision Alloys. Grades [in Russian].
 
16. O.A.Bannych, P.B.Bydberg, S.P.Alisova et al., Phase Diagrams of Binary and Multicomponent Fe-based Systems, Metallurgy (1986) [in Russian].
 
17. V.V.Reznichenko, A.I.Somov, M.A.Tikhonovsky, Phys. Met. Metallogr., 37, 657 (1973).
 
18. A.Leyland, A.Matthews, Wear, 246, 1 (2000).
https://doi.org/10.1016/S0043-1648(00)00488-9
 
19. J.Musil, F.Kunc, H.Zeman, H.Polakova, Surf. Coat. Technol., 54, 304 (2002).
https://doi.org/10.1016/S0257-8972(01)01714-5
 

Current number: