Funct. Mater. 2020; 27 (2): 315-321.

doi:https://doi.org/10.15407/fm27.02.315

The influence of composition on short-range order of amorphous As2S3-Sb2S3 chalcogenide alloys: a XRD and Raman study

A.Stronski1, L.Revutska2, K.Shportko1, O.Gudymenko1, J.Baran3, M.Trzebiatowska3, P.Oleksenko1

1V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine 2National Technical University of Ukraine "Igor Sikorsky KPI", 37 Peremohy Ave., 03056 Kyiv, Ukraine 3Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Str., 50-422 Wroclaw, Poland

Abstract: 

In the present paper the amorphous As2S3-Sb2S3 chalcogenide alloys have been studied by X-ray diffraction and Raman spectroscopy. The experimental X-ray diffraction profiles confirmed an amorphous nature of studied samples. The obtained pair distribution functions (PDF) have manifested the evolution of the short-range in As2S3-Sb2S3 system. The positions of the first peaks correspond to the values of 2.29-2.42 Å, positions of the second peaks - 3.45-3.54 Å for studied glasses. Systematic compositional changes in As2S3-Sb2S3 alloys have been observed in the evolution of Raman bands. Raman data show that pseudo-binary As2S3-Sb2S3 glasses contain different nanophases: AsS3/2 and SbS3/2 pyramidal units, As4S4 units and S rings or S8 rings fragments, whose concentration changes along the chosen compositional cross-section.

Keywords: 
chalcogenide glasses, X-ray diffraction, short-range order, Raman spectroscopy, nanophases.
References: 

1. A.Andriesh, S.Sergheev, G.Triduh et al., Adv. Mater., 9, 3007 (2007).
 
2. A.Stronski, E.Achimova, O.Paiuk et al., J. Nano Res., 39, 96 (2016).
https://doi.org/10.4028/www.scientific.net/JNanoR.39.96
 
3. A.V.Stronski, E.Achimova, O.Paiuk et al., Nanoscale Res. Lett., 12, 286 (2017).
https://doi.org/10.1186/s11671-017-2060-6
 
4. R.Naik, R.Ganesan, K.S.Sangunni, Thin Solid Films, 518, 5437 (2010).
https://doi.org/10.1016/j.tsf.2010.04.009
 
5. F.Sava, J. Optoelectron., Adv. Mater., 3, 425 (2001).
 
6. M.Frumar, Z.Cernosek, J.Jedelsky et al., J. Optoelectron. Adv. Mater., 3, 177 (2001).
 
7. E.F.Venger, Y.A.Pasechnik, K.V.Shportko, J. Molecul. Struct., 744, 947 (2005).
https://doi.org/10.1016/j.molstruc.2004.11.046
 
8. K.V.Shportko, Y.A.Pasechnik, M.Wuttig et al., Vibrat. Spectr., 50, 209 (2009).
https://doi.org/10.1016/j.vibspec.2008.11.006
 
9. V.Rubish, E.Gera, M.Pop et al., Semicond. Phys. Quant.Electr. Optoelectron., 12, 251 (2009).
https://doi.org/10.15407/spqeo12.03.251
 
10. M.M.Pop, I.I.Shpak, Glass Phys. Chem., 38, 196 (2012).
https://doi.org/10.1134/S108765961202006X
 
11. J.Reul, L.Fels, N.Qureshi et al., Phys .Rev. B, 87, 2 (2013).
https://doi.org/10.1103/PhysRevB.87.205142
 
12. J.Holubova, Z.Cernosek, E.Cernoskova, J. Therm. Anal. Calorim., 116, 699 (2014).
https://doi.org/10.1007/s10973-014-3761-z
 
13. K.V.Shportko, A.D.Izotov, V.M.Trukhan et al., Russ. J. Inorganic Chemistry, 59, 986 (2014).
https://doi.org/10.1134/S0036023614090204
 
14. K.Shportko, T.Barlas, E.Venger et al., Curr. Appl. Phys, 16, 8 (2016).
https://doi.org/10.1016/j.cap.2015.10.001
 
15. K.V.Shportko, R.Rueckamp, T.V.Shoukavaya et al., Vibrat. Spectr., 87 (2016).
https://doi.org/10.1016/j.vibspec.2016.09.024
 
16. K.Shportko, L.Revutska, O.Paiuk et al., Opt. Mater. (Amst), 73, 489 (2017).
https://doi.org/10.1016/j.optmat.2017.08.042
 
17. L.Revutska, K.Shportko, A.Stronski et al., 2017 IEEE 7th Int. Conf. Nanomater. Appl. Prop. Zatoka, Ukr., (2017).
 
18. A.Stronski, O.Paiuk, A.Gudymenko et al., Ceramics International, 41, 7543 (2015).
https://doi.org/10.1016/j.ceramint.2015.02.077
 
19. A.Stronski, L.Revutska, A.Meshalkin et al., Optical Material (Amst), 94, 393 (2019).
https://doi.org/10.1016/j.optmat.2019.06.016
 
20. A.Stronski, T.Kavetskyy, L.Revutska et al., J. Non-Crystall. Solids, 521, 119533 (2019).
https://doi.org/10.1016/j.jnoncrysol.2019.119533
 
21. Y.Kawamoto, S.Tsuchihashi, Ceramic Soc. Japan, 77, 328 (1969).
https://doi.org/10.2109/jcersj1950.77.882_35
 
22. K.White, R.L.Crane, J.A.Snide, J. Non-Crystall. Solids, 103, 210 (1988).
https://doi.org/10.1016/0022-3093(88)90200-1
 
23. G.P.Kothiyal, R.Kumar, M.Goswami, J. Non-Crystall. Solids, 353, 1337 (2007).
https://doi.org/10.1016/j.jnoncrysol.2006.09.053
 
24. E.Cernoskova, Z.Cernosek, J.Holubova, J. Therm. Anal. Calorim, 115, 285 (2013).
https://doi.org/10.1007/s10973-013-3298-6
 
25. K.N'Dri, V.Coulibaly, D.Houphouet-Boigny et al., J. Ovonic Res., 9, 113 (2013).
 
26. T.Kavetskyy, O.Shpotyuk, M.Popescu et al., J. Optoelectron. Adv. Mater., 9, 3079 (2007).
 
27. T.Kavetskyy, Y.Shpotyuk, Visnyk Lviv University, 43, 179 (2009).
 
28. M.El Idrissi Raghni, P.E.Lippens, J.Olivier-Fourcade et al., J. Non-Crystall. Solids. 192&193, 191 (1995).
https://doi.org/10.1016/0022-3093(95)00351-7
 
29. M.Kato, S.Onari, T.Arai, J. Appl. Phys., 22, 1382 (1983).
https://doi.org/10.1143/JJAP.22.1382
 
30. L.Tichy, A.Triska, M.Frumar et al., J. Non-Crystall. Solids. 50, 371 (1982)
 
31. M.Chromcikova, M.Liska, J.Holubova et al., J. Non-Crystall. Solids, 53, 10 (2013).
 
32. A.Stronski, E.Achimova, O.Paiuk et al., Nanoscale Res. Lett., 11, 1 (2016).
https://doi.org/10.1186/s11671-016-1235-x
 
33. V.Petkov, J. Appl. Cryst., 22, 387 (1989).
https://doi.org/10.1107/S0021889889002104
 
34. K.Shportko, R.Ruekamp, H.Klym, J. Nano-Electron. Physics, 7, 1 (2015).
 
35. T.Proffen, S.J.L.Billinge, T.Egami et al., Z. Kristallogr., 218, 132 (2003).
https://doi.org/10.1524/zkri.218.2.132.20664
 
36. L.Cervinka, A.Hruby, J. Non-Crystall. Solids. 48, 231 (1982).
https://doi.org/10.1016/0022-3093(82)90164-8
 
37. R.M.Holomb, V.M.Mitsa, J. Optoelectron. Adv. Mater., 6, 1177 (2004).
 
38. O.Kondrat, N.Popovich, R.Holomb et al., Phys. Status Solid. C. 7, 893 (2010).
 
39. C.Lin, Z.Li, L.Ying et al., J. Phys. Chem. C, 116, 5862 (2012).
https://doi.org/10.1021/jp208614j
 
40. S.H.Messaddeq, O.Boily, S.H.Santagneli et al., Opt. Mater. (Amst), 6, 1452 (2016).
https://doi.org/10.1364/OME.6.001451
 
41. E.I.Kamitsos, J.A.Kapoutsis, I.P.Culeac et al., J. Phys. Chem. B, 101, 11061 (1997).
https://doi.org/10.1021/jp972348v
 
42. A.V.Stronski, M.Vlcek, S.A.Kostyukevych et al., Semicond. Phys. Quantum Electron. Optoelectron., 5, 284 (2002).
https://doi.org/10.15407/spqeo5.03.284
 

 

Current number: