Funct. Mater. 2020; 27 (2): 348-353.

doi:https://doi.org/10.15407/fm27.02.348

Galvanochemical formation of functional coatings by the cobalt-tungsten-zirconium alloys

T.A.Nenastina1, M.V.Ved'2, N.D.Sakhnenko2, V.O.Proskurina2, L.P.Fomina2

1Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo St., 61002 Kharkov, Ukraine
2National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., 61002 Kharkiv, Ukraine

Abstract: 

The functional properties of ternary Co-W-Zr(ZrO2) alloys obtained in a pulsed mode from pyrophosphate-citrate electrolytes are discussed. The obtained coatings are characterized by a uniformly developed surface without cracks and a sufficiently high and reproducible microhardness. It was determined that the size of the globules on the alloy surface decreases with increasing of the current density to 10 A/dm2. It was found that increase of temperature favorably affects the current efficiency of the alloy and the microhardness of the Co-W-Zr(ZrO2) coating. The modes of electrosynthesis of the coatings by cobalt-tungsten-zirconium alloys are substantiated, an their influence on the functional properties of the alloy and current efficiency is investigated.

Keywords: 
ternary alloys, microhardness, the current efficiency, electrolysis regimes.
References: 

1. E.J.Podlaha, D.Landolt, J. Electrochem. Soc., 144, 1672 (1997).
https://doi.org/10.1149/1.1837658
 
2. K.Murase, M.Ogawa, T.Hirato, Y.Awakura, J.Electrochem. Soc., 151, 798 (2004).
https://doi.org/10.1149/1.1817758
 
3. M.Ibrahim, S.Abd el Rehim, S.Moussa, J. Appl. Electrochem., 33, 627 (2003).
https://doi.org/10.1023/A:1024916903544
 
4. N.Tsyntsaru, H.Cesiulis, M.Donten et al., Surf. Eng. Appl. Elect., 48, 491 (2012).
https://doi.org/10.3103/S1068375512060038
 
5. M.Ved, M.Glushkova, N.Sakhnenko, Functional Materials, 20, 87 (2013).
https://doi.org/10.15407/fm20.01.087
 
6. A.D.Osipov, B.M.Shirokov, Voprosy Atomnoy Nauki i Tekhniki, 17, 175 (2008).
 
7. Zh.Bobanova, D.Grabko, Z.Danitse et al., Elektricheskiye Metody Obrabotki Poverkhnosti, 1, 12 (2007).
 
8. Y.S.Yapontseva, A.I.Dikusar, V.S.Kyblanovskii, Surf. Eng. Appl. Elect., 50, 330 (2014). 
https://doi.org/10.3103/S1068375514040139
 
9. J.Zeng, J.Y.Lee, J. of Pover Sources, 140, 268 (2005).
https://doi.org/10.1016/j.jpowsour.2004.08.022
 
10. C.T.J.Low, R.G.A.Wills, F.C.Walsh, Surf. Coat. Technol., 201, 371 (2006).
https://doi.org/10.1016/j.surfcoat.2005.11.123
 
11. F.I.Danilov, Ye.A.Vasil'yeva, I.V.Smenova, V.S.Protsenko, Voprosy Khimii i Khimicheskoy Tekhnologii, 6, 111 (2013).
 
12. V.V.Kuznetsov, A.A.Kalinkina, T.V.Pshenichkina, V.V.Balabayev, Elektrokhimiya, 44, 144 (2008).
https://doi.org/10.1134/S1023193508120070
 
13. M.Ved, N.Sakhnenko, T.Bairachnaya, N.Tkachenko, Functional Materials, 15, 613 (2008).
 
14. S.A.Silkin, A.V.Gotelyak, N.I.Tsyntsaru, A.I.Dikusar, Elektronnaya Obrabotka Materialov, 51, 25 (2015).
https://doi.org/10.3103/S106837551503014X
 
15. F.Z.Yang, Z.H.Ma, L.Huang et al., Chin. J. Chem., 24, 114 (2006).
https://doi.org/10.1002/cjoc.200690004
 
16. Yu.D.Gamburg, Ye.N.Zakharov, G.Ye.Goryunov, Elektrokhimiya, 37, 789 (2001).
https://doi.org/10.1023/A:1016752231015
 
17. G.Yar-Mukhamedova, M.Ved', N.Sakhnenko, M.Koziar, Appl. Surf. Sci, 421, 68 (2017). 
https://doi.org/10.1016/j.apsusc.2017.01.196
 
18. M.V.Ved', M.D.Sakhnenko, O.V.Bohoyavlens'ka, T.O.Nenastina, Mater. Sci., 44, 79 (2008). 
https://doi.org/10.1007/s11003-008-9046-6
 
19. A.V.Karakurkchi, M.V.Ved', I.Yu.Ermolenko, N.D.Sakhnenko, Surf. Eng. Appl. Elect., 52, 43 (2016). 
https://doi.org/10.3103/S1068375516010087
 
20. M.V.Ved', M.D.Sakhnenko, H.V.Karakurkchi et al., Mater. Sci., 51, 701 (2016). 
https://doi.org/10.1007/s11003-016-9893-5
 
21. Ya.V.Korobeynikova, S.L.Fuks, Yu.S.Mikhalitsyna, Simvol Nauki, 5, 55 (2018).
 
22. H.Cesiulish, A.Budreikaz, Mater. Sci., 46, 52 (2010).
 
23. N.D.Sakhnenko, M.V.Ved, Y.K.Hapon, T.A.Nenastina, Russ. J. Appl. Chem., 88, 1941 (2015).
https://doi.org/10.1134/S1070427215012006X
 
24. V.A.Nazarenko, V.P.Antonovich, Ye.M.Nevskaya, Gidroliz Ionov Metallov v Razbavlennykh Rastvorakh, Atomzdat, Moscow (1979) [in Russian].

Current number: