Funct. Mater. 2020; 27 (2): 368-377.


Phase transition, structural and magnetic properties studied in Y doped low temperature phase MnBi

Jinhui Huang1, Wei He1,2, Tonghan Yang1,2, Guorui Xiao1, Guoren Huang1, Xiaowei Wu1, Peiqi Chen1

1Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), School of Resources, Environment and Materials, and College of Chemistry & Chemical Engineering, Guangxi University, Nanning, China
2Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning, China


The MnBi1-xYx (x = 0, 0.04, 0.08, 0.12, and 0.16) series alloys were successfully prepared and their crystal structure, Debye temperature and magnetic properties were studied in this work. Using Rietveld crystal structure refinement to determine the low temperature phase MnBi content in the annealed alloy samples is over 79% , and it was determined that the doped Y atoms replaced the position of Bi in the crystal structure of MnBi. By Debye temperature calculation, it is found that the Debye temperature decreases as the doping content increases. The Curie temperature, paramagnetic to ferromagnetic transition temperature, thermal hysteresis, saturation magnetization and coercive force of the alloys changes significantly with increasing doping content, which helps to develop related research and application of rare earth-free permanent magnet materials, and can directly customize the relevant properties of materials.

MnBi doping, crystal structure, Debye temperature, magnetic property.

1. F. Heusler, Uber Manganbronze und uber die Synthese magnetisierbarer Legierungen aus unmagnetischen Metallen, Angewandte Chemiie. 17 (1904) 260-264.
2. C. Guillaud, J. Phys. 12, 143 (1951).
3. J. Cui, J. P. Choi, G. Li, E. Polikarpov, et. al. J. Appl. Phys. 115, 17A748, (2014).
4. J. B. Yang, W. B. Yelon, W. J. James,, J. Appl. Phys. 91, 8669, (2002 ).
5. A. F. Andresen, W. Halg, P. Fischer, E.Stoll,, J. Acta Chem. Scand. 21, 1543 (1967).
6. Y. B. Yang, X. G. Chen, R. Wu,, J. Appl. Phys., 111,143, (2012).
7. K. Kang, L. H. Lewis, A.., J. Appl.Phys.Lett. 87 62505, (2005).
8. T. X. Nguyen, H. Van Pham, V. Van Nguyen, J. Physica B. 552, 190, (2005).
9. Y. Yang, J. W. Kim, P. Z. Si, J. Alloys Compd., 769, 813 (2018).
10. X. Guo, A. Zaluska, Z. Altounian, J. O. Strom-Olsen, J. Mater. Res. 5, 2646, (1990).
11. L. Shen, S. W. Yang, M. F. Ng, V. Ligatchev,, J.Am.Chem.Soc., 130,13956, (2008).
12. T. Roisnel, J. Rodriguez-Carvajal, Mater.Sci.Forum. 378,118, (2011).
13. J. Rodriguez-Carvajal, Physica B. 192, 55, (1993).
14. W. He, T. H. Yang, H. R. Liu, H. C. Zhong, and J. X. Wen, Crystal structure and electrical resistivity of ZrAg0.46Al2.54, ITMS. 15(2015) 364.
15. U Jeong, X. W. Teng, Y. Wang, Adv. Mater. 19, 33, (2007).
16. J. B. Yang, K. Kamaraju, W. B. Yelon, W. J. James, J. Appl.Phys.Lett. 79, 1846, (2001).
17. D. T. Zhang, S. Cao, M. Yue, W. Q. Liu, J. Appl. Phys., 109. 07A722, (2011).
18. E. Adams, W. M. Hubbard, A. M. Syeles, J. Appl. Phys. 23, 1207, (1952).
19. X. Guo, X. Chen, Z. Altounian, J. O. Strom-Olsen, J. Appl. Phys. 73 , 6275, (1993).
20. H. R. Hilzinger, H. Kronmuller, J. Physica. B+C. 86, 1365, (1977).
21. P. Gaunt, J. Philos. Mag. B. 48, 261, (2006).

Current number: