Funct. Mater. 2020; 27 (2): 378-382.

doi:https://doi.org/10.15407/fm27.02.378

Effects of nickel doping on electronic conductivity and electrochemical properties of LiMnPO4/C

Fengpeng Li, Zhoulan Yin, LiJiao Zhou

School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, China

Abstract: 

Samples of LiMn1-xNixPO4/C (with x = 0, 0.01, 0.03, 0.05 and 0.1) were synthesized using a combination of spray-drying followed by a traditional ball milling method. XRD analysis shows that the Ni doping does not change the structure of the single LiMnPO4 phase, while SEM studies demonstrated that Ni doping can significantly inhibit aggregation of the synthesized compounds. Electrochemical testing indicates that the Ni doped powders have superior performance relative to the un-doped versions. LiMn0.95Ni0.05PO4/C has the best electrochemical performance in the measurements of initial capacity and cycling performance. The first specific discharge capacity of this material is 127.4 mAh·g-1 at a rate of 0.1 C at 25°C, and it retains 88.9 % of its initial capacity after 50 cycles. Improvement of the electrochemical performance of LiMnPO4/C with Ni doping could be due to improvements in both electrical conductivity and lithium ion diffusion.

Keywords: 
cathode materials, LiMnPO<sub>4</sub>, doping, electrical properties, spray-drying.
References: 

1. L.Wu, S.K.Zhong, Ionics, 19, 1061 (2013).
https://doi.org/10.1007/s11581-013-0919-9
 
2. Luo, J.R.Dahn, Electroch. Acta, 54, 4655 (2009).
https://doi.org/10.1016/j.electacta.2009.03.068
 
3. Z.Yang, G.S.Cao, Solid State Electrochem., 1271, (2012).
https://doi.org/10.1007/s10008-011-1523-4
 
4. T.N.L.Doan, Z.Bakenov, Adv. Powder Techn., 21, 187 (2010).
https://doi.org/10.1016/j.apt.2009.10.016
 
5. Y.Mizuno, M.Kotobuki, 117, 1225 (2009).
https://doi.org/10.2109/jcersj2.117.1225
 
6. Yan Bofeng, Zeng Ming, Functional Materials, 26, 205 (2019).
https://doi.org/10.15407/fm26.01.205
 
7. P.Yan, L.Lu, X.Liu, Mater. Chem. A, 1, 10429 (2013).
https://doi.org/10.1039/c3ta11586k
 
8. X.L.Pan, C.Y.Xu, Electrochim. Acta, 87, 303 (2013).
https://doi.org/10.1016/j.electacta.2012.09.106
 
9. V.Kolea, D.Stoilova, J. Solid State Chem., 133(2), 416 (1997).
https://doi.org/10.1006/jssc.1997.7500
 
10. K.Wang, R.Cai, Electrochim. Acta, 54, 2861 (2009).
https://doi.org/10.1016/j.electacta.2008.11.012
 
11. S.Moon, D.K.Kim, Ceram. Int., 38, 471 (2012).
https://doi.org/10.1016/j.ceramint.2011.05.042
 
12. F.X.Wu, X.H,Li, Power Sour., 202, 374 (2012)
https://doi.org/10.1016/j.jpowsour.2011.11.050
 
13. J.Z.Li, S.H.Luo, J. Electrochem. Soc., 166, A118 (2019).
https://doi.org/10.1149/2.0401902jes
 
14. H.Yang, J.Y.Liu, Nanofibers. Chem. Sus. Chem., 12, 3817 (2019).
https://doi.org/10.1002/cssc.201901377
 
15. R.Veena, P.Puspamitra, Surface Scien., 495, 143541 (2019).
https://doi.org/10.1016/j.apsusc.2019.143541
 
16. R.El Khalfaouy, A.Addaou, Alloys Compd., 775 (2019).
https://doi.org/10.1016/j.jallcom.2018.10.161
 
17. J.Li, S.Luo, Appl. Mater. Interfaces, 10, 10786 (2018).
https://doi.org/10.1021/acsami.7b17597
 

Current number: