Funct. Mater. 2020; 27 (3): 444-449.

doi:https://doi.org/10.15407/fm27.03.444

Effect of the oxygen deficiency on the luminescent properties of the mixed YVxP1-xO4 phosphors

O.G.Viagin, I.I.Bespalova, P.O.Maksimchuk, V.V.Seminko, E.N.Okrushko, Yu.V.Malyukin

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

In the paper the effect of oxygen vacancies on the luminescent properties of mixed YVxP1-xO4 phosphors was studied. Amount of oxygen vacancies was controlled by annealing the phosphors in the oxidizing and neutral atmospheres. It was shown that in oxygen-deficient YVxP1-xO4 phosphors a strong luminescence quenching is observed, which was attributed to the migration-enhanced energy transfer from undistorted to distorted vanadate complexes. Also, the contribution of the emission of such distorted vanadate complexes leads to the broadening and red shift of the luminescence band of the mixed phosphors.

Keywords: 
orthovanadates, oxygen vacancies, luminescence, quenching.
References: 

1. W.M.Yen, S.Shionoya, H.Yamamoto, Phosphor Handbook, 2nd ed., CRC Press, Taylor and Francis, Boca Raton (2007).
https://doi.org/10.1201/9781420005233

2. G.Blasse, B.C.Grabmaier, Luminescent Materials, Springer Berlin Heidelberg, Berlin, Heidelberg (1994).
https://doi.org/10.1007/978-3-642-79017-1

3. R.W.Mooney, S.Z.Toma, J. Chem. Phys., 46, 4544 (1967).
https://doi.org/10.1063/1.1840591

4. M.Ya.Khodos, B.V.Shul'gin, F.F.Gavrilov et al., J. Appl. Spectrosc., 16, 758 (1972).
https://doi.org/10.1007/BF00616229

5. D.Sardar, R.C.Powell, J. Appl. Phys., 51, 2829 (1980).
https://doi.org/10.1063/1.327950

6. G.Blasse, G.P.M.Van Den Heuvel, J. Luminescence, 11, 47 (1975).
https://doi.org/10.1016/0022-2313(75)90078-2

7. M.A.Aia, J. Electrochem. Soc., 114, 367 (1967).
https://doi.org/10.1149/1.2426598

8. H.Ronde, G.Blasse, J. Inorg. Nucl. Chem., 40, 215 (1978).
https://doi.org/10.1016/0022-1902(78)80113-4

9. R.Jablonski, S.M.Kaczmarek, M.Swirkowicz et al., J. Alloys Compd., 300-301, 310 (2000).
https://doi.org/10.1016/S0925-8388(99)00730-6

10. N.Y.Garces, K.T.Stevens, G.K.Foundos et al., J. Phys.:Condens. Matter., 16, 7095 (2004).
https://doi.org/10.1088/0953-8984/16/39/040

11. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer US, Boston, MA (2006).
https://doi.org/10.1007/978-0-387-46312-4

12. H.Ronde, J.G.Snijder, Chem. Phys. Lett., 50, 282 (1977).
https://doi.org/10.1016/0009-2614(77)80182-6

13. S.J.Motloung, S.K.K.Shaat, K.G.Tshabalala et al., Luminescence, 31, 1069 (2016).
https://doi.org/10.1002/bio.3073

14. L.Shirmane, C.Feldmann, V.Pankratov, Physica B, 504, 80 (2017).
https://doi.org/10.1016/j.physb.2016.10.007

15. L.Yang, G.Li, W.Hu et al., Eur. J. Inorg. Chem., 2011, 2211 (2011).
https://doi.org/10.1002/ejic.201001341

16. I.A.Tupitsyna, P.O.Maksimchuk, A.G.Yaku<->bovskaya et al., Functional Materials, 23, 535 (2016).
https://doi.org/10.15407/fm23.04.357

17. D.A.Spassky, V.V.Mikhailin, A.E.Savon et al., Opt. Mat., 34, 1804 (2012).
https://doi.org/10.1016/j.optmat.2012.05.007

18. D.Spassky, V.Nagirnyi, S.Vielhauer et al., Opt. Mat., 59, 66 (2016).
https://doi.org/10.1016/j.optmat.2016.01.041

19. D.Millers, S.Chernov, L.Grigorjeva et al., Radiat. Meas., 29, 263 (1998).
https://doi.org/10.1016/S1350-4487(98)00034-1

 

Current number: