Funct. Mater. 2020; 27 (3): 450-453.

doi:https://doi.org/10.15407/fm27.03.450

Photoconductivity of zinc selenide nanocrystals obtained by chemical method

Yu.A.Nitsuk1, I.V.Tepliakova1, Yu.F.Vaksman1, V.A.Smyntyna1, I.R.Yatsunsky2

1Odesa I.Mechnikov National University, 2 Dvoryanskaya Str., 65082 Odesa, Ukraine
2Uniwersytet im. Adama Mickiewicza w Poznaniu, 1 Wieniawskiego Str., 61-712 Poznan, Poland

Abstract: 

The photoconductivity spectra of ZnSe nanocrystals deposited on porous silicon wafers and wafers with silicon nanorods are studied. After deposition of ZnSe nanocrystals, a series of lines appears in the visible region of the the photoconductivity spectra of por-Si. The high-energy photoconductivity line is due to band-gap transitions in ZnSe nanoparticles. The other five lines of photoconductivity are due to transitions involving associative donor-acceptor centers, which include both intrinsic defects and uncontrolled impurity defects.

Keywords: 
Nanocrystals, long-wavelength photoconductivity.
References: 

1. A.Sukhanova, A.Baranov, Y.Volkov, Proc. SPIE, 46, 133 (2008).
 
2. A.Sukhanova, J.Devy, L.Venteo et al., Anal. Biochem,, 324, 60 (2004).
https://doi.org/10.1016/j.ab.2003.09.031
 
3. A.E.Raevskaya, A.L.Stroyuk, S.Ya.Kuchmiy et al., Colloid Surf., 290, 304 (2006).
https://doi.org/10.1016/j.colsurfa.2006.05.038
 
4. E.S.Speranskaya, N.V.Beloglazova, P.Lenain et al., Biosens. Bioelectron., 53, 225 (2014).
https://doi.org/10.1016/j.bios.2013.09.045
 
5. S.-H.Kang, C.K.Kumar, Z.Lee et al., Appl. Phys. Lett., 93, 191116 (2008).
https://doi.org/10.1063/1.3028070
 
6. N.N.Ledentsov, M.Grundmann, F.Heinrichsdorff et al., IEEE J. Sel. Top. Quant., 6, 439 (2000).
https://doi.org/10.1109/2944.865099
 
7. Chung Wonkeun, Yu Hong Jeong, Hee Park Sun et al., Mater. Chem. Phys., 126, 162 (2011).
https://doi.org/10.1016/j.matchemphys.2010.11.045
 
8. Yu.A.Nitsuk, A.S.Leonenko, Ya.I.Lepikh, Proc, Uwbusis-2018, 8520229, 210 (2018).
 
9. M.A.Hines, P.Guyot Sionnest, J. Phys. Chem,, 100, 468 (1996).
https://doi.org/10.1021/jp9530562
 
10. K.Rajeshwar, N.R.de Tacconi, C.R.Chenthamarakshan, Chem. Mater., 13, 2765 (2001).
https://doi.org/10.1021/cm010254z
 
11. F.Q.Chen, D.Gerion, Nano Lett., 4, 1827 (2004).
https://doi.org/10.1021/nl049170q
 
12. S.Santra, H.Yang, P.H.Holloway et al., J. Am. Chem. Soc., 127, 1656 (2005).
https://doi.org/10.1021/ja0464140
 
13. C.B.Wang, Z.F.Jiang, L.Wei, Nano Energy, 1, 440 (2012).
https://doi.org/10.1016/j.nanoen.2012.02.005
 
14. L.J.Diguna, Q.Shen, J.Kobayashi et al., Appl. Phys. Lett., 91, 023116 (2007).
https://doi.org/10.1063/1.2757130
 
15. B.Pejova, A.Tanusevski, I.Grozdanov, J. Sol. State Chem,, 174, 276 (2003).
https://doi.org/10.1016/S0022-4596(03)00221-4
 
16. V.A.Smyntyna, I.R.Iatsunskiy, O.V.Sviridova et al., FIO, 102355, (2012).
 
17. O.V.Vakulenko, S.V.Kondratenko, Semicond. Phys. Quant. Optoelectron., 6, 192 (2003).
https://doi.org/10.15407/spqeo6.02.192
 
18. P.Parandiy, L.Monastyrskii, Electron. Inform. Technol., 10, 133 (2018).
https://doi.org/10.30970/eli.10.12
 
19. V.V.Serdyuk, N.N.Korneva, Yu.F.Vaksman, Phys. Stat. Sol. A, 91, 173(1985).
https://doi.org/10.1002/pssa.2210910122
 
20. A.J.Rosa, B.G.Streetman, J. Luminescence, 10, 211 (1975).
https://doi.org/10.1016/0022-2313(75)90070-8
 
21. Yu.F.Vaksman, Yu.A.Nitsuk, Yu.N.Purtov et al., Semicond,, 35, 920 (2001).
https://doi.org/10.1134/1.1393021

Current number: