Funct. Mater. 2020; 27 (3): 482-487.

doi:https://doi.org/10.15407/fm27.03.482

Dependence of the properties of GaAs (111)A and Ga1-xAlxAs (111)A epitaxial layers on the conditions of their growth by organometallic vapor phase epitaxy

R.Krukovskyi1, K.Smits2, I.Semkiv3, S.Krukovskyi1, I.Saldan4, H.Ilchuk3, O.Kuntyi3

1Scientific Research Company "Electron-Carat", 202 Stryiska St., 79031 Lviv, Ukraine
2Istitute of Solid State Physics, University of Latvia, 8 Kengaraga St., 1063 Riga, Latvia
3Lviv Polytechnic National University, 12 Bandery St., 79013 Lviv, Ukraine
4I.Franko National University of Lviv, 6 Kyryla and Mefodia St., 79005 Lviv, Ukraine

Abstract: 

The studies of GaAs (111)A and Ga1-xAlxAs (111)A epitaxial layers have been carried out using low-temperature photoluminescence and high-resolution X-ray diffraction. Correlation between the BV/AIII ratio and the photoluminescence intensity of n-GaAs:Si layers prepared through OMVPE on a semi-insulating GaAs (111)A substrate is discussed in details. For an epitaxial layer prepared at the BV/AIII ratio of 94, the peak characteristic of a free exciton was found to be separated from a continuous broad edge band and higher carrier mobility was revealed. High-resolution X-ray diffraction measurements of a two-layer epitaxial n-GaAs:Si/p-Ga1-xAlxAs:Zn heterostructure prepared on a p-GaAs (111)A substrate indicates crystallization of structurally perfect epitaxial heterostructures with a mirror-like surface morphology.

Keywords: 
photoluminescence, carrier mobility.
References: 

1. T.J.Anderson, M.J.Tadjer, M.A.Mastro et al., J. Electron. Mater., 39, 478 (2010).
https://doi.org/10.1007/s11664-010-1111-x
 
2. M.Tapajna, M.Jurkovic, L.Valik et al., Appl. Phys. Lett., 102, 243509 (2013).
https://doi.org/10.1063/1.4811754
 
3. Y.Chii, L.Ganesh, S.Samudra, Power Microelectronics: Device and Process Technologies World Scientific Publishing Company (2008),
 
4. A.Talhi, A.Belghachi, H.Moughli et al., Digest J. Nanomater. Biostruct., 11, 1361 (2016).
 
5. K.Attari, L.Amhaimar, A.Elyaakoubi et al., Int. J. Photoenergy, ID 8269358 (2017).
https://doi.org/10.1155/2017/8269358
 
6. R.Alcotte, M.Martin, J.Moeyaert et al., APL Mater., 4, 046101 (2016).
https://doi.org/10.1063/1.4945586
 
7. M.Soylu, Appl. Opt., 57, 6788 (2018).
https://doi.org/10.1364/AO.57.006788
 
8. J.Lu, Z.-Q.Fan, J.Gong, X.-W.Jiang, AIP Adv., 7, 065302 (2017).
https://doi.org/10.1063/1.4985388
 
9. I.V.Levchenko, V.M.Tomashyk, I.B.Stratiychuk et al., Functional Materials, 25, 165 (2018).
https://doi.org/10.15407/fm25.01.165
 
10. S.Torres- Jaramillo, C.Pulzara-Mora, R.Bernal-Correa et al., Univ. Sci., 24, 523 (2019).
https://doi.org/10.11144/Javeriana.SC24-3.saos
 
11. H.Jani, L.Chen, L.Duan, IEEE J. Quant. Electron., 56, 4000208 (2020).
https://doi.org/10.1109/JQE.2019.2960774
 
12. M.R.Aziziyan, H.Sharma, J.J.Dubowski, ACS Appl. Mater. Interfaces, 11, 17968 (2019).
https://doi.org/10.1021/acsami.9b02079
 
13. M.A.Islam, W.M.Hassen, A.F.Tayabali, J.J.Dubowski, Biochem. Engineer. J., 154, 10743515 (2020).
https://doi.org/10.1016/j.bej.2019.107435
 
14. https://powerpulse.net/high-voltage-gaas-power-diode-production-begins-i...
 
15. S.Fuek, M.Umemura, N.Yamada et al., J. Appl. Phys., 68, 97 (1990).
https://doi.org/10.1063/1.347076
 
16. E.Mao, S.A.Dickey, A.Majerfeld, et al., Microelectron. J., 28, 727 (1997).
https://doi.org/10.1016/S0026-2692(96)00110-3
 
17. M.Umenura, K.Kuvahara, S.Fuke, J. App. Phys., 72, 313 (1992).
https://doi.org/10.1063/1.352141
 
18. S.Cho, A.Sanz-Hervas, J.Kim et al., Microelectron. J, 30, 455 (1999).
https://doi.org/10.1016/S0026-2692(98)00152-9
 
19. S.Larkin, A.Avksentyev, M.Vakiv et al., Phys. Scripta, 90, 094001 (2015).
https://doi.org/10.1088/0031-8949/90/9/094001
 
20. L.Pavesi, M.Guzzi, J. Appl. Phys., 75, 4779 (1994).
https://doi.org/10.1063/1.355769
 
21. V.I.Havrylenko, A.M.Hrekhov, D.V.Korbutiak, V.H.Lytovchenko, Optical Properties of Semiconductors, Naukova Dumka, Kyiv (1987),
 
22. S.Krukovskyi, H.Ilchuk, R.Krukovskyi et al., J. Nano Electr. Phys., 10, 03025 (2018).
https://doi.org/10.21272/jnep.10(3).03025

Current number: