Funct. Mater. 2020; 27 (3): 488-496.

doi:https://doi.org/10.15407/fm27.03.488

Galvanomagnetic properties of polycrystalline Bi1-xSbx solid solutions in the concentration range x = 0-0.25

E.I.Rogacheva, A.N.Doroshenko, A.A.Drozdova, O.N.Nashchekina, Yu.V.Men'shov

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The dependences of the Hall coefficient, electrical conductivity, magnetoresistance, electron and hole concentration and mobility on the Bi1-xSbx solid solution composition in the concentration range x = 0-0.25 at 77 and 300 K in magnetic fields 1 T and 0.05 T were obtained. It was shown that all the dependences exhibit a distinct nonmonotonic oscillating behavior at both temperatures and in both magnetic fields. The presence of concentration-dependent anomalies of galvanomagnetic properties is attributed to critical phenomena accompanying the percolation-type transition from dilute to concentrated solid solutions and electronic phase transitions: a transition to a gapless state, the semimetal - semiconductor transition, and indirect - direct band gap semiconductor transition.

Keywords: 
Composition, temperature, magnetic field, Hall coefficient, electrical conductivity, magnetoresistance, charge carrier mobility, percolation, electronic phase transition.
References: 

1. Materials, Preparation, and Characterization in Thermoelectrics, ed. by D.M.Rowe, CRC Press, Boca Raton: Taylor & Francis Group (2012).

2. Materials Aspect of Thermoelectricity, ed. by C.Uher, CRC Press, Boca Raton (2016).

3. M.Z.Hasan, C.L.Kane, Rev. Mod. Phys., 82, 3045 (2010).
https://doi.org/10.1103/RevModPhys.82.3045

4. L.Fu, C.L.Kane, E.J.Mele, Phys. Rev. Lett., 98, 106803 (2007).
https://doi.org/10.1103/PhysRevLett.98.106803

5. D.Hsieh, D.Qian, L.Wray et al., Nature, 452, 970 (2008).
https://doi.org/10.1038/nature06843

6. P.Ghaemi, R.S.K.Mong, J.Moore, Phys. Rev. Lett., 105, 166603 (2010).
https://doi.org/10.1103/PhysRevLett.105.166603

7. Ya.A.Ugay, Ye.G.Goncharov, G.V.Semenova, V.B.Lazarev, Phase Equilibria between Phosphorus, Arsenic and Bismuth, Nauka, Moscow (1989) [in Russian].

8. N.B.Brandt, R.Hermann, G.I.Golysheva et al., Sov. Phys. JEPT, 56, 1247 (1982).

9. N.V.Brandt, Chudinov S.M. V.G.Karavaev, Zh. Eksper. Teor. Fiziki, 70,2296 (1976) .

10. B.Lenoir, H.Scherrer, T.Caillat, Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research I, ed. by T.M.Tritt, v.69, Acad. Press San Diego (2001), p.101.
https://doi.org/10.1016/S0080-8784(01)80150-2

11. B.Lenoir, A.Dauscher, M.Cassart et al., J. Phys. Chem. Solids, 59. 129 (1998).
https://doi.org/10.1016/S0022-3697(97)00187-X

12. L.A.Kirakozova, A.Krapf, W.Kraak et al., Phys. Stat. Sol. (b), 169, 417 (1992).
https://doi.org/10.1002/pssb.2221690215

13. B.A.Tairov, X.A.Gasanova, R.I.Selim-zade., Semiconductors, 50, 996 (2016).
https://doi.org/10.1134/S1063782616080248

14. Z.J.Yue, X.L.Wang, S.S.Yan, Appl. Phys. Lett., 107, 112101 (2015).
https://doi.org/10.1063/1.4930882

15. V.M.Grabov, G.A.Ivanov, V.L.Naliorov, A.F.Panarin, Seminar of Semiconductor Materials for Thermoelectric Conversion, Leningrad (1985), p.35.

16. G.A. Ivanov and A.M., Popov, Fizika i Tehnika Poluprov., 5, 2409 (1963) (in Russian).

17. W.M.Yim, A.Asmith, Solid State Electronics, 15, 1141 (1972).
https://doi.org/10.1016/0038-1101(72)90173-6

18. G.A. Ivanov, G.N. Kolpachnikov, V.L. Naletov, T.Ya. Yakovleva, Polumetally: Uchenye Zapiski LGPI., 384, 39 (1968).

19. V.L. Naletov, G.A. Ivanov, T.Ya. Yakovleva, V.I. Nikolaev, Izv. AN SSSR, Neorgan. Mater., 7, 1321 (1971).

20. A.L.Jain, Phys. Rev., 114, 1518 (1959).
https://doi.org/10.1103/PhysRev.114.1518

21. T.Yasaki, Y.Abe, J. Phys. Soc. Jpn., 24, 290 (1968).
https://doi.org/10.1143/JPSJ.24.290

22. V.A. Alekseeva, N.F. Zaets, Ђ.Ђ. Kudryashov, Fizika i Technika Poluprov, 12, 2052 (1978).

23. N.Wagner, O.Brummer, H.R.Prietzsch, Kristall und Technik, 9, 1153 (1974).
https://doi.org/10.1002/crat.19740091010

24. S.D.Probert, C.B.Thomas, Applied Energy, 5, 127 (1979).
https://doi.org/10.1016/0306-2619(79)90013-8

25. S.Tanuma, J. Phys. Soc. Jpn., 16, 2349 (1961).
https://doi.org/10.1143/JPSJ.16.2349

26. 26. G.A. Ivanov, A.M., Popov, B.I Chityakov, Fizika. Metallov i Metallovedenie, 16 , 184 (1963).

27. V.M.Grabov, O.N.Uryupin, V.A.Komarov, Proc. 17th. Int. Conf. Thermoelectrics, Nagoya, Japan (1998), p.78.

28. T.K.Dey, S.K.Ghatak, J. Phys., 32, 161 (1989).
https://doi.org/10.1007/BF02847020

29. H.Kitagawa, H.Noguchi, M.Itoh, Y.Noda, Proc. 22nd Int. Conf. Thermoelectrics (2003), p.290.

30. H.Kitagawa, H.Noguchi, T.Kiyabu et al., J. Phys. Chem. Solids, 65, 1223 (2004).
https://doi.org/10.1016/j.jpcs.2004.01.010

31. K.Malik, D.Das, D.Mondal et al., J. Appl. Phys., 112, 083706 (2012).
https://doi.org/10.1063/1.4759137

32. S.Dutta, V.Shubha, T.G.Ramesh, F.D'Sa, J. Alloy Compd., 467. 305 (2009).
https://doi.org/10.1016/j.jallcom.2007.11.146

33. S.Dutta, V.Shubha, T.G.Ramesh, Physica B, 405, 1239 (2010).
https://doi.org/10.1016/j.physb.2009.11.051

34. G.A.Ivanov ,.‹., V.L.Naletov, I.I.Fadeeva, '.Ђ.Yakovleva, Polumetally: Uchenye Zapiski LGPI, 384, 21 (1968).

35. S.Tanuma, J. Phys. Soc. Jpn., 14, 1246 (1959).
https://doi.org/10.1143/JPSJ.14.1246

36. S.Tanuma, J. Phys. Soc. Jpn., 16, 2354 (1961).
https://doi.org/10.1143/JPSJ.16.2354

37. X.Devaux, F.Brochin, A.Dauscher et al., Proc. 16th Int. Conf. Thermoelectrics (1997), p.199.

38. X.Devaux, F.Brochin, R.Martin-Lopez, H.Scherrer, J. Phys. Chem. Solids, 62, 119 (2002).
https://doi.org/10.1016/S0022-3697(01)00087-7

39. R.Martin-Lopez, A.Dauscher, H.Scherrer et al., Appl. Phys. A, 68, 597 (1999).
https://doi.org/10.1007/s003390050947

40. G.Cochrane, W.V.Youdelis, Metal. Trans., 3, 2843 (1972).
https://doi.org/10.1007/BF02652851

41. D.Cadavid, J.E.Rodrigues, Phys. Stat. Sol. (c), 2, 3677 (2005).
https://doi.org/10.1002/pssc.200461721

42. H.J.Liu, L.F.Li, AIP Conf. Proc., v.824 (2006), p.43.

43. H.J.Liu, Y.L.Wu, R.J.Huang et al., J. Phys. Chem. Solids, 67, 1492 (2006).
https://doi.org/10.1016/j.jpcs.2006.02.003

44. H.J.Liu, Ch.M.Song, S.T.Wu, L.F.Li, Cryogenics, 47, 56 (2007).
https://doi.org/10.1016/j.cryogenics.2006.09.007

45. E.I.Rogacheva, A.A.Drozdova, M.S.Dresselhaus, Proc. 25th Int. Conf. Thermoelectrics, 107 (2006).

46. E.I.Rogacheva, A.A.Drozdova, J. Thermoelectricity, 2. 22 (2006).

47. E.I.Rogacheva, A.A.Yakovleva (Drozdova A.A.), V.I.Pinegin, M.S.Dresselhaus, J. Phys. Chem. Solids, 69, 580 (2008).
https://doi.org/10.1016/j.jpcs.2007.07.042

48. E.I.Rogacheva, A.A.Drozdova, O.N.Nashchekina et al., Appl. Phys. Lett., 94, 202111 (2009).
https://doi.org/10.1063/1.3139076

49. A.A.Drozdova, E.I.Rogacheva, M.V.Dobrotvorskaya, P.V.Mateichenko, J. Thermoelectricity, 2. 76 (2009).

50. E.I.Rogacheva, A.A.Drozdova, O.N.Nashchekina et al., Phys. Stat. Sol. (a), 207, 344 (2010).
https://doi.org/10.1002/pssa.200925144

51. E.I.Rogacheva, A.A.Drozdova, O.N.Nashchekina, Yu.V.Men'shov, J. Electron. Mater., 42, 2098 (2013).
https://doi.org/10.1007/s11664-013-2534-y

52. E.I.Rogacheva, A.N.Doroshenko, V.I.Pinegin, M.S.Dresselhaus, J. Thermoelectricity, 6, 13 (2013).

53. E.I.Rogacheva, A.N.Doroshenko, O.N.Nashchekina, M.S.Dresselhaus, Appl. Phys. Lett., 109, 131906 (2016).
https://doi.org/10.1063/1.4963880

54. A.N.Doroshenko, E.I.Rogacheva, A.A.Drozdova et al., J. Thermoelectricity, 4, 23 (2016).

55. E.I.Rogacheva, A.A.Drozdova, I.I.Izhnin, M.S.Dresselhaus, Phys. Status Solidi (A), 206, 298 (2009).
https://doi.org/10.1002/pssa.200824430

56. E.I.Rogacheva, A.N.Doroshenko, O.N.Nashchekina, Materials Today Proceedings (in press, accepted).

57. E.V.Kuchis, Galvanomagnetic Effects and the Methods of their Measurement, Radio and communication, Moscow (1990) [in Russian].

58. V.L.Bonch-Bruevich, S.G.Kalashnikov, Semiconductor Physics, Nauka, Moscow (1990) [in Russian].

59. G.A.Mironova, M.V.Sydakova, Ya.G.Ponomarev, Fizika Tverd. Tela, 22, 3628 (1980).

60. Yu.I.Ravich, Rapoport, Fizika Tverdogo Tela, 34, 960 (1992).

61. E.I.Rogacheva, J. Phys. Chem. Solids, 64, 1579 (2003).
https://doi.org/10.1016/S0022-3697(03)00245-2

62. I.M.Tsidilkovskiy, Gapless Semiconductors are New Class of Materials, Nauka, Moscow (1986) [in Russian].

63. B.I.Shklovskii, A.L.Efros, Electronic Properties of Doped Semiconductors, Springer-Verlag, New York (1984).
https://doi.org/10.1007/978-3-662-02403-4

64. D.Stauffer, A.Aharony, Introduction to Percolation Theory, Taylor & Francis, London-Washington, DC (1992).

Current number: