Funct. Mater. 2020; 27 (3): 497-499.

doi:https://doi.org/10.15407/fm27.03.497

Kinetics of phase transitions in highly oriented graphite intercalated with potassium

I.F.Mikhailov, E.N.Zubarev, A.I.Mikhailov, V.V.Mamon, S.S.Borisova, S.V.Surovitskiy

Department of Physics of Metals and Semiconductors, National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The kinetics of structural transformations of atomic-layered structures of highly oriented pyrographite intercalated with potassium (C60K, C36K, C24K, and C8K) at THOPG = 300°C has been studied by in situ XRD. The shape of the kinetic curves suggests a complex nature of the rearrangement of the structure of C24K into C36K and C48K: first, C36K is formed from C24K, and then C48K. The C60K phase with a minimum potassium content is observed only at the final stage (t = 24 h), when the remaining phases are practically not detected. Only the C60K phase with the lowest potassium content is found to be structurally stable for 5 months.

Keywords: 
intercalation-deintercalation kinetics, high-oriented pyrolytic graphite, potassium, X-ray diffraction.
References: 

1. M.E.Misenheimer, H.Zabel, Phys. Rev. B, 27, 1443 (1983).
https://doi.org/10.1103/PhysRevB.27.1443

2. S.A.Solin, N.Caswell, J. Raman Spectrosc., 10, 129 (1981).
https://doi.org/10.1002/jrs.1250100124

3. V.A.Nalimova, M.El Gadi, D.Guerard et al., Carbon, 33, 153 (1995).
https://doi.org/10.1016/0008-6223(94)00119-K

4. Herold, M. El Gadi, J-F.Mareche, P.Lagrange, Mol. Cryst. Liquid Cryst., 244, 41 (1994).
https://doi.org/10.1080/10587259408050080

5. Y.Li, Y.Lu, P.Adelheim et al., Chem. Soc. Rev., 48 (17), 4655, (2019).
https://doi.org/10.1039/C9CS00162J

6. Jin Zhao, Xiaoxi Zou et al., Adv. Funct. Mater., 26, 8103 (2016).
https://doi.org/10.1002/adfm.201602248

7. J.Purewall, J.Brandon Keith et al., J. Chem. Phys., 137, 224704 (2012).
https://doi.org/10.1063/1.4767055

8. J.Liu, T.Yin, B.Tian et al., Advan. Energy Mater., 9, 22 (2019).
https://doi.org/10.1002/aenm.201970081

9. M.Chandesris, D.Caliste et al., J. Phys. Chem. C, 123, 23711 (2019)
https://doi.org/10.1021/acs.jpcc.9b05298

10. P.Courtois, C.Menthonnex, R.Hehn et al., Nucl. Instrum. Meth. Phys. Res. A, 634, S37 (2011).
https://doi.org/10.1016/j.nima.2010.06.222

11. I.F.Mikhailov, A.A.Baturin, A.I.Mikhailov, L.P.Fomina, Functional Materials, 23, 5 (2016).
https://doi.org/10.15407/fm23.01.005

12. A.I.Mikhailov, Functional Materials, 27, 628 (2020).
https://doi.org/10.15407/fm23.03.628

Current number: