Funct. Mater. 2020; 27 (3): 513-521.

doi:https://doi.org/10.15407/fm27.03.513

Effect of copper addition on the structure and properties of glass ceramics based on biogenic hydroxyapatite and sodium-borosilicate glass for bone tissue engineering

O.Sych1, O.Kuda1, M.Demyda2, N.Pinchuk1, T.Tomila1, O.Bykov1, Y.Evych1, A.Chodara3, W.Lojkowski3

1I.Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, Department of Functional Materials for Medical Application, 3 Krzhyzhanovsky Str., 03680 Kyiv, Ukraine
2National Technical University of Ukraine "I. Sikorsky Kyiv Polytechnic Institute", Department of Chemical Technology of Ceramics and Glass, 37 Peremogy Ave., 03056 Kyiv, Ukraine
3Institute of High Pressure Physic of the Polish Academy of Sciences, Laboratory of Nanostructures, 01-142 Warsaw, 29/37 Sokolowska Street, Poland

Abstract: 

Bioceramics based on biogenic hydroxyapatite and sodium-borosilicate glass modified with 0; 0.5, 1.0, and 2.0 wt. % copper was prepared by two-stage sintering (1100 and 750°C). According to XRD results, it was established that the introduction of copper influences the volume of the unit crystalline cell of hydroxyapatite after both the first and second stages of sintering. After the latter, the formation of secondary phases (NaCaPO4, Ca2SiO4, Ca3(SiO4)O and Na2Si3O7) was found for both copper-free and copper-modified composite materials. It was shown that the amount of copper does not affect the phase composition of samples after the final (second) sintering. It was established that copper addition decreases the total porosity of sintered samples (from 15.8 to 11.1 %) with forming an opener porous structure as compared with copper-free bioceramics and makes it possible to increase the compressive strength by 1.7 times.

Keywords: 
hydroxyapatite, glasses, composites, bioceramics, copper.
References: 

1. G.Kaur, V.Kumar, F.Baino et al., Mater. Sci. Eng. C, 104, 109895 (2019).
https://doi.org/10.1016/j.msec.2019.109895
 
2. Y.Ma, H.Dai, X.Huang, Y.Long, J. Mater. Sci., 54, 10437 (2019).
https://doi.org/10.1007/s10853-019-03632-3
 
3. P.-Y.Hsu, H.-C.Kuo, W.-H.Tuan et al., Prog. Biomater., 8, 115 (2019).
https://doi.org/10.1007/s40204-019-0116-7
 
4. O.Sych, N.Pinchuk, Process. Appl. Ceram., 1, 1 (2007).
https://doi.org/10.2298/PAC0702001S
 
5. A.Iatsenko, O.Sych, T.Tomila, Process. Appl. Ceram., 9, 99 (2015).
https://doi.org/10.2298/PAC1502099I
 
6. O.R.Parkhomei, N.D.Pinchuk, O.E.Sych et al., Powder Metall. Met. Ceram., 55, 172 (2016).
https://doi.org/10.1007/s11106-016-9792-1
 
7. C.Lin, H.Zhu, Y.Zeng, Surf. Coat. Technol., 365, 129 (2019).
https://doi.org/10.1016/j.surfcoat.2018.10.063
 
8. X.Wang, S.Ihara, X.Li et al., Colloid. Surf. B., 174, 300(2019).
https://doi.org/10.1016/j.colsurfb.2018.11.026
 
9. O.Sych, Ђ.Iatsenko, '.Tomila et al., AdvNanoBioM&D, 2, 223 (2018).
 
10. E.E.Sych, Glass Ceram., 72, 107 (2015).
https://doi.org/10.1007/s10717-015-9735-1
 
11. E.E.Sych, N.D.Pinchuk, V.P.Klimenko et al., Powder Metall. Met. Ceram., 54, 67 (2015).
https://doi.org/10.1007/s11106-015-9681-z
 
12. O.Sych, N.Pinchuk, V.Klymenko et al., Process. Appl. Ceram., 9, 125 (2015).
https://doi.org/10.2298/PAC1503125S
 
13. P.Nasker, A.Samanta, S.Rudra et al., J. Mech. Behav. Biomed. Mater., 95, 136 (2019).
https://doi.org/10.1016/j.jmbbm.2019.03.032
 
14. O.Sych, A.Iatsenko, H.Tovstonoh et al., Functional Materials, 24, 46 (2017).
https://doi.org/10.15407/fm24.01.046
 
15. T.-H.Huang, C.-T.Kao, Y.-F.Shen et al., J. Mater. Sci.:Mater. Med., 30, 68 (2019).
https://doi.org/10.1007/s10856-019-6274-2
 
16. O.Kuda, N.Pinchuk, O.Bykov et al., Nanoscale Res. Lett., 13, 155 (2018).
https://doi.org/10.1186/s11671-018-2550-1
 
17. O.Kaygili, J. Aust. Ceram. Soc., 55, 381 (2019).
https://doi.org/10.1007/s41779-018-0245-9
 
18. Ћ.M.Otychenko, T.Ye.Babutina, D.P.Ziatkevich et al., Functional Materials, 25, 695 (2018).
https://doi.org/10.15407/fm25.04.695
 
19. A.C.Marsh, N.P.Mellott, N.Pajares-Chamorro et al., Bioact. Mater., 4, 215 (2019).
https://doi.org/10.1016/j.bioactmat.2019.05.003
 
20. C.R.Mariappan, N.Ranga, Ceram. Int., 43, 2196 (2017).
https://doi.org/10.1016/j.ceramint.2016.11.003
 
21. D.Zamani, F.Moztarzadeh, D.Bizari, Int. J. Biol. Macromol., 137, 1256 (2019).
https://doi.org/10.1016/j.ijbiomac.2019.06.182
 
22. C.F.Marquesa, S.Olheroa, J.C.C.Abrantes, Ceram. Int., 43, 15719 (2017).
https://doi.org/10.1016/j.ceramint.2017.08.133
 
23. K.Magyari, Zs.Pap, Z.R.Toth, J. Sol-Gel Sci. Technol., 91, 634 (2019).
https://doi.org/10.1007/s10971-019-05066-4
 
24. M.J.Robles-Aguilaa, J.A.Reyes-Avendano, M.E.Mendoza, Ceram. Int., 43, 12705 (2017).
https://doi.org/10.1016/j.ceramint.2017.06.154
 
25. S.E.Etok, E.Valsami-Jones, T.J.Wess et al., J. Mater. Sci., 42, 9807 (2007).
https://doi.org/10.1007/s10853-007-1993-z
 
26. Z.Radovanovic, B.Jokic, D.Veljovic et al., Appl. Surf. Sci., 307, 513 (2014).
https://doi.org/10.1016/j.apsusc.2014.04.066
 
27. R.K.Singh, S.Kannan, Mater. Sci. Eng. C, 45, 530 (2014).
https://doi.org/10.1016/j.msec.2014.10.017
 
28. N.D.Pinchuk, L.A.Ivanchenko, Powder Metall. Met. Ceram., 42, 357 (2003).
https://doi.org/10.1023/B:PMMC.0000004155.75027.cc
 
29. E.E.Sych, N.D.Pinchuk, L.A.Ivanchenko et al., Nanosistemy, Nanomaterialy, Nanotehnologii, 7, 263 (2009).
 
30. O.Sych, N.Pinchuk, L.Ivanchenko, Process. Appl. Ceram., 3, 157 (2009).
https://doi.org/10.2298/PAC0903157S
 
31. E.E.Sych, N.D.Pinchuk, L.A.Ivanchenko, Powder Metall. Met. Ceram., 49, 153 (2010).
https://doi.org/10.1007/s11106-010-9215-7

Current number: