Funct. Mater. 2020; 27 (3): 533-558.

doi:https://doi.org/10.15407/fm27.03.533

Gas-filled pore in bounded particle

V.V.Yanovsky, M.I. Kopp, M.A.Ratner

Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The diffusive evolution has been studied of gas-filled pore has in a bounded particle in gas media. The nonlinear equation set, describing the behaviour of gas-filled pore on bounded particle is obtained. Asymptotic modes are considered for evolution of small and large pores. Analytical solutions are obtained in asymptotic modes. The comparison is conducted of these solutions with results of numerical solution of complete equation set. The characteristic regularities of gas-filled pore behavior are found at arbitrary pore position relative to matrix particle center.

Keywords: 
gas-filled pore, bounded particle
References: 

1. Slezov V. V. The coalescence of the system of dislocation loops and pore under irradiation, Solid State Physics, 1967, vol. 9, No. 12, p.3448.
 
2.Slezov V.V., Shikin V.B. Coalescence of pores at presence of bulk vacancy sources, Euro nuclears., 1965, vol.2, No. 3, pp.127-131.
 
3. Saralidze Z.K., Slezov V.V. Coalescence of dislocation loops at nonstationary regime, Solid State Physics, 1965, vol. 7, No. 3, p.1605.
 
4. V.V. Slezov, V.V. Sagalovich, Diffusive decomposition of solid solutions, Sov. Phys. Usp.30 (1987), pp. 23-45.
https://doi.org/10.1070/PU1987v030n01ABEH002792
 
5. Slezov V.V. The gasfilled pore onset in solid solutions, Solid State Physics, 1995, vol.37, No.10, pp. 2879-2891.
 
6. Slezov V.V., Osmaev O.A., Shapovalov R.V. Poremotion in material with a source of gas atoms. Questions of atomic science and technique. 2005. No. 3. Volume: Physics of radiation damage and radiation material science (86), pp. 38-42.
 
7. V. V. Slezov, A. S. Abyzov, Zh. V. Slezova, The Nucleation of Gas-Filled Bubbles in Low-Viscosity Liquids, Colloid Journal, 2004, vol. 66, Issue 5, pp. 575-583.
https://doi.org/10.1023/B:COLL.0000043840.14124.35
 
8. P.G. Cheremskoy, V.V. Slyozov, V.I. Betehin, Pores in Solid Matter, Energoatomizdat, Moscow, 1990 (in Russian).
 
9. Alan J. Markworth, On the coarsening of gas-filled pores in solids, Metallurgical Transactions, 1973, vol. 4, Issue 11, pp. 2651-2656.
https://doi.org/10.1007/BF02644271
 
10. Problems of solid state theory/ NAS of Ukraine: KPTI. editors: Baryahktar V.G., Pletminskiy S.V. et al. -- Kiev: Naukova dumka, 1991, 200 p.
 
11. Saralidze Z.K., Slezov V.V., On the theory of coalescence of gas pores. Solid State Physics, 1965, vol.7, No.6, pp. 1605-1611
 
12. Slezov V.V. Theory of gas pore growth at diffusion decomposition of multicomponent systems. Metallofizika, 1981, vol. 3, No.1, pp. 21-29.
 
13. V. V. Slezov, Gas Bubbles in Viscous Liquids and Melts, Journal of Colloid and Interface Science, 2002, vol. 255, Issue 2, pp. 274-292.
https://doi.org/10.1006/jcis.2002.8610
 
14. Ragulya A.V., Skhorohod V.V., Consolidation of nanostructural materials, Kiev, Naukova dumka, 2007, 374p.
 
15. V.I. Dubinko, A.V. Tur, A.A. Turkin and V.V. Yanovsky, Diffusion interaction of new-phase precipitates at random distances, Phys. Met. Metallogr. Vol.68. (1989), pp.17-25.
 
16. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A., A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 304 (2004), pp.711-714.
https://doi.org/10.1126/science.1096566
 
17. Zaporozhets T.V., Gusak A.M., Podolyan O.N. Evolution of pore in nanoshells -- competition of direct and reverse Kirkindale effect, effects of Frenkel and Gibbs-Tomphson (phenomenological description and computer simulation). Usp. Fiz. Met.2012, vol. 13, pp.1-70.
https://doi.org/10.15407/ufm.13.01.001
 
18. V. V. Yanovsky , M. I. Kopp, M. A. Ratner. Evolution of vacancy pores in bounded particles. arXiv:1809.06565v1[cond-mat.mes-hall] (2018)
https://doi.org/10.15407/fm26.01.131
 
19. V.V. Yanovsky, M.I. Kopp, M. A. Ratner. Evolution of gas-filled pore in bounded particles. arXiv:1810.103319v1[cond-mat.mes-hall] (2018)
 
20. Ja.E. Geguzin, M.A. Krivoglaz, Motion of Macroscopic Inclusions in Solid Matter, Metallurgy, Moscow, 1971 (in Russian).
 
21. G. Arfken, Mathematical Methods in Physics, Atomizdat, Moscow, 1970 (in Russian).

Current number: