Funct. Mater. 2020; 27 (3): 595-604.


Influence of the bias potential applied in the process of deposition in constant and pulsed form on the structure, substructure, stress-strain state and hardness of TiN vacuum-arc coatings

N.V.Pinchuk, O.V.Sobol', V.V.Subbotina, G.I.Zelenskaya

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine


The possibilities of structural engineering using three technological schemes for the formation of TiN vacuum-arc coatings are considered. When using the first scheme (without a high-voltage pulse potential) with a close to zero ("floating") constant bias potential, a polycrystalline structure is formed in the coatings without a preferred crystallite growth orientation. The average crystallite size (L) is about 31 nm, and microdeformation (ε) varies from 0.28 % to 0.12 % with an increase in nitrogen pressure in the vacuum chamber from 0.26 Pa to 0.66 Pa. The supply of a constant potential (Uc = -200 V) leads to the formation of a texture with the [111] axis, an increase in L to 91 nm and ε = 0.7 %. The second coating scheme for "floating" Uc with the simultaneous supply of a pulsed high voltage potential (Ui) at the structural level leads to the formation of a preferred orientation with the [100] and [110] axes. With this coating formation scheme, with an increase in the pulse potential, a decrease in L and ε is observed. The use of the third deposition scheme (combined action of Uc = -200 V and Ui) at Ui with a pulse duration of τ = 4 μs leads to a change in the texture axis from [111] (at Ui = -850 V) to a texture with the [110] axis (at Ui = -2000 V). At τ = 16 μs, the preferred orientation with the [110] axis becomes almost the only one. Based on a generalization of the results, it was found that the main negative contribution to the texture formation with the [111] and [100] axes is made by the constant negative potential Uc of 0...200 V. Using the high-voltage potential Ui = -(850...2000) V in a pulsed form stimulates texture formation [110] and a change in the macro- and microdeformed state. The highest hardness (40-45 GPa) is achieved for the regimes with the smallest Ui = -850 V, when the texture with the [110] axis is not the main one, and the macrodeformation of compression is 1.7-2.4 %. A 2-level model for describing the process under the action of methods of supplying bias potentials of different magnitude is proposed.

structural engineering, titanium nitride, X-ray diffractometry, substructure, macrostrain, microhardness.

1. Handbook of Plasma Immersion Ion Implantation and Deposition, ed. by A.Anders, Wiley, New York (2000).

2. A.Anders, Vacuum, 67, 673 (2002).
3. M.M.M.Bilek, R.N.Tarrant, D.R.McKenzie et al., IEEE Trans. Plasma Sci., 31, 939 (2003).
4. N.Popovic, Z.Bogdanov, B.Goncic et al., Thin Solid Films, 459, 286 (2004).
5. O.V.Sobol', A.A.Meilekhov, Techn.l Phys. Lett., 44, 63 (2018).
6. O.V.Sobol', O.Dur, A.A.Postelnyk, Z.V.Kraievska, Functional Materials, 26, 310 (2019).
7. O.V.Sobol', A.A.Andreev, V.F.Gorban et al., J. Nano- .Electron. Phys., 8, 01042 (2016).
8. O.V.Sobol', A.A.Andreev, V.F.Gorban, Metal Sci. Heat Treatm., 58, 37 (2016).
9. O.V.Sobol', A.A.Postelnyk, A.A.Meylekhov et al., J. Nano- Electron.Phys. 9, 03003 (2017).
10. O.V.Sobol', A.A.Andreev, V.A.Stolbovoj et al., Voprosy Atomnoj Nauki i Tekhniki, Worldcat, 4-98/74, 174 (2011).
11. O.V.Sobol', O.A.Shovkoplyas, Techn. Phys. Lett., 39, 536 (2013).
12. I.C.Noyanand. J.B.Cohen, Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, New York (1987).
13. C.Genzel, Phys. Stat. Solidi (a), 159, 283 (1997).<283::AID-PSSA283>3.0.CO;2-O
14. C.Genzel, W.Reinmers, Phys. Stat. Solidi: A-Appl. Res., 166, 751 (1998).<751::AID-PSSA751>3.0.CO;2-L
15. E.Aznakayev, Micron-Gamma for Estimation the Physico-mechanical Properties of Micro-materials, in: Proc. Intern. Conf. "Small Talk-2003", San Diego, California, USA, 001 (2003), p.8.
16. V.F.Gorban', Powder Metall. Metal Cer., 47, 493 (2008).
17. O.V.Sobol', A.A.Andreev, V.F.Gorban' et al., Techn. Phys., 61, 1060 (2016).
18. O.V.Sobol', O.Dur, Functional Materials, 27, 100 (2020).
19. O.V.Sobol, A.A.Andreev, V.A.Stolbovoy, V.E.Filchikov, Techn. Phys. Lett., 38, 168 (2012).
20. P.Gargaud, S.Labat, O.Thomas, Thin Solid Films, 319, 9 (1998).
21. O.Piot, C.Gautier, J.Machet, Surf. Coat. Tech., 94-95, 409 (1997).
22. O.V.Sobol', O.N.Grigoriev, O.Dub et al., Sverkhtverdye Materialy, 5, 38 (2005).
23. D.R.McKenzie, Y.Tin, W.D.McFall, N.H.Hoang, J. Phys. Condens. Matter., 8, 5883 (1996).
24. S.Heinrich, S.Schirmer, D.Hirsch et al., Surf. Coat. Tech., 202, 2310 (2008).
25. S.H.N.Lim, D.G.McCulloch, M.M.M.Bilek, D.R.McKenzie, Surf. Coat. Tech., 174-175, 76 (2003).

Current number: