Funct. Mater. 2020; 27 (3): 605-610.


Using cyclic voltammetry to determine the protective ability of phosphate coatings

V.Statsyuk1, A.Bold1,2, M.Zhurinov1, L.Fogel1, L.Sassykova2, T.Vagramyan3, A.Abrashov3

1D.Sokolsky Institute of Fuel, Catalysis and Electrochemistry, JSC, 142 Kunaev Str., 050010 Almaty, Kazakhstan
2Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
3D.Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia


The paper presents experimental material and its discussion on the use of cyclic voltammetry to determine the optimal conditions for the formation of protective anticorrosive coatings on the surface of iron samples deposited from phosphating solutions containing phosphatization accelerators of various nature (hydroxylamine, nitrophenol). The concentration of phosphate accelerators was established on the basis of a change in the cathode current maximum due to the electroreduction of products during the sequential cycling of current-voltage curves on a steel electrode without updating the surface of phosphate films in a solution of 0.3 M Na2SO4. The optimal concentration of the phosphate accelerator was found by the absence of a current maximum on the cathode part of the cyclic current - voltage curves during sequential cycling. According to this method, the optimal concentrations of the phosphating accelerators of hydroxylamine and nitrophenol were determined. The data obtained are consistent with the protective ability of phosphate coatings, defined by the drip method of Akimov.

phosphate coatings, corrosion resistance, voltammetry, hydroxylamine, nitrophenol.

1. N.S.Grigoryan, E.F.Akimova, T.A.Vahramyan, Phosphating, Globus, Moscow (2018) [in Russian].
2. I.A.Kazarinov, A.A.Makhmmod, N.M.Trepak, L.A.Isaicheva, Eurasian Union Sci., 3-4, 101 (2016).
3. M.Tamilselvi, P.Kamaray, M.Arthanareeswari, S.Devikala, Appl. Surf. Sci., 327, 218 (2015).
4. Y.Xie, M.Chen, D.Xie et al., Corrosion Sci., 128, 1 (2017).
5. M.Zubielewicz, E.Kaminska-Tarnawska, A.Kozlowska, Progr. Org. Coat., 53, 276 (2005).
6. H.Verbruggenn, K.Baert, H.Terryn, I.De Graeve, Surf. Coat. Techn., 361, 280 (2019).
7. R.Amini, H.Vakili, B.Ramezanzadeh, J. Taiwan Institute Chem. Engin., 58, 542 (2016).
8. B.V.Jegdic, J.B.Bajat, J.P.Popic, V.B.Miskovic-Stankovic, Progr. Org. Coat., 70, 127 (2011).
9. R.Ramanauskas, O.Girciene, L.Gudaviciute, A.Selskis, Appl. Surf. Sci., 327, 131 (2015).
10. I.Liascukiene, M.Ben Salah, R.Sabot et al., Appl. Surf. Sci., 434, 561 (2018).
11. S.Narayanan, Rev. Advan. Mater. Sci., 9, 130 (2005).
12. N.C,Debnath, J. Surf. Engin. Mater. Advan. Techn., 3, 94 (2013).
13. P.Filip, B.Kamil, F.Stanislava et al., Coatings, 6, 46 (2016).
14. A.A.Abrashov, N.S.Grigoryan, T.A.Vagramyan, E.F.Akimova, Electroplat. Surf. Treat., 18, 48 (2010).
15. A.A.Abrashov, N.N.Chamashkina, G.A.Yur'eva et al., Electroplat. Surf. Treat., 20, 7 (2012).
16. A.A.Abrashov, N.S.Grigoryan, T.A.Vagramyan et al., Electroplat. Surf. Treat., 21, 40 (2013).
17. V.N.Statsyuk, U.Sultanbek, L.A.Fogel, News Nation. Acad. Sci. Republ. Kazakhstan, 5, 197 (2016).
18. V.N.Statsyuk, L.A.Fogel, A.Bold et al., Rasayan J. Chemistry, 13, 339 (2020).
19. V.N.Statsjuk, L.A.Fogel, M.Zh.Zhurinov et al., News Nation. Acad. Sci. Republ. Kazakhstan, 439, 79 (2020).
20. V.N.Statsyuk, L.A.Fogel, S.Ait et al., in: Book Abstr. 4th. Int. Congr. Techn. Engin. Sci., Kuala Lumpur, Malaysia p.1, (2017).
21. V.N.Statsyuk, S.Ait, M.Zhurinov et al., News Nation. Acad. Sci. Republ. Kazakhstan, 5, 220 (2017).
22. State Standard (SS) 9.302-88, ESZKS, Metallic and Nonmetallic Coatings. Methods of Accelerated Corrosion Tests.

Current number: