Funct. Mater. 2020; 27 (3): 611-621.

doi:https://doi.org/10.15407/fm27.03.611

The choice of the grouting method for liquid glass granulate while obtaining composite thermal insulation materials

T.Rymar, O.Suvorin

Volodymyr Dahl East Ukrainian National University, 59-a Tsentralnyi Pr., 93400 Severodonetsk, Ukraine

Abstract: 

The paper presents the research on the choice of the most effective grouting method for the liquid glass granulate by the binder based on liquid glass during production of composite insulation materials by their bloating under the microwave irradiation. The choice of the grouting method is carried out by determining the basic physical and mechanical properties of thermal insulation materials depending on the ratio of the granular filler to the binder. The research has shown the feasibility of obtaining composite insulation materials by volume grouting, i.e. simultaneous bloating of the granular filler and the liquid glass binder, which prevents shrinkage, cracks, foam collapse and formation of large voids due to close packing of contacting granules and uniform distribution of the bloated binder that fills the intergranular space. Therefore, such materials are characterized by better physical and mechanical properties.

Keywords: 
composite insulation material, liquid glass, bloating, microwave irradiation, physical and mechanical properties, volume grouting, contact grouting.
References: 

1. V.A.Lotov, Stroit. Mater., 8, 11 (2004).
 
2. Zh.D.Kaldybekova, A.M.Brener, K.K.Syrmanova, Vestnik Nacional'noj Akademii Nauk Respubliki Kazahstan, 52, 3 (2007).
 
3. Zin Min Htet, I.N.Tihomirova, Uspehi Himii i Himicheskoi Tehnologii, 34, 3 (2017).
 
4. U.S.Patent No. 20150010750 (2015).
 
5. Zh.Xinzhong, J.Weizhun, L.Yajun et al., Functional Materials, 24, 481 (2017).
 
6. U.S.Patent EP No. 1803693 A1 (2007).
 
7. U.S.Patent No. 9018139 B2 (2015).
 
8. U.S.Patent No. 6818055 B2 (2004).
 
9. U.S.Patent No. 20130029885 A1 (2013).
 
10. N.A.Pinchukova, A.Y.Voloshko, V.A.Chebanov et al., Functional Materials, 23, 1 (2016).
 
11. U.S.Patent No. 8171751 (2012).
 
12. D.Y.Denisov, V.A.Kulikov, V.Z.Abdrakhimov, Refract. Industr. Ceramics, 331, 52 (2012).
https://doi.org/10.1007/s11148-012-9426-1
 
13. U.S.Patent No. 9376344 (2016).
 
14. N.V. Eremina, E.G.Avvakumov, V.Y.Zelinskii, Glass and Ceramics, 58, 62 (2005).
https://doi.org/10.1007/s10717-005-0034-0
 
15. K.Obada, World of Coal Ash, Kentucki, USA (2005), p.11.
 
16. U.S.Patent WO No. 2004024793 A2 (2004).
 
17. T.E.Rymar, Functional Materials, 25, 376 (2018).
https://doi.org/10.15407/fm25.02.376
 
18. V.A.Lotov, V.A.Kutuhyn, Steklo i Keramika, 6, 1 (2008).

Current number: