Funct. Mater. 2020; 27 (3): 628-637.


X-ray analysis of materials by the ratio of the intensities of incoherent and coherent scattering


Department of Physics of Metals and Semiconductors, National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine


The fundamental possibility of quick identification of materials by the ratio of the intensities of incoherent and coherent scattering IC/IR is shown. Unlike traditional X-ray fluorescence analysis, identification is possible in the absence of a relationship between the positions of the scattering peaks and the composition of the sample, and a qualitative and quantitative analyses of the composition of the material is carried out in the framework of solving one inverse problem. The method is based on the dependence of the IC/IR ratio on the effective atomic number of the scatterer material and the spectrum registration conditions (momentum transfer variable x = sin θ/λ). The experiments were carried out for one-component materials with atomic number Z from 4 (Be) to 31 (Ga) and binary compounds with stoichiometric composition at two values of x1 = 0.831 …-1 and x2 = 1.297 -1 using a WDXRF spectrometer. The set of calibration functions IC/IR(Z, x) allows to create a system of linear equations whose solutions are the concentrations and atomic numbers of the chemical elements that make up the material. The high photon energy of scattered radiation (17.44 keV) makes it possible to detect light impurities, starting from hydrogen (Z = 1), and the smaller the atomic number of the impurity, the higher the sensitivity of the method.

Compton-to-Rayleigh scattering intensity ratio, effective atomic number, light elements.

1. H.Ehrhardt, Rontgenfluoreszenzanalyse Anwendung in Betriebslaboratorien, VEB Deutscher Verlagfur Grundstoffindustrie Leipzig (1981).
2. A.H.Compton, Phys. Rev., 21, 483 (1923).
3. J.H.Hubbell, Phys. Chem. Ref. Data, 4, 471 (1975).
4. J.H.Woo, Phys. Rev., 27 (1926).
5. E.O.Wollan, Phys. Rev., 43 (1933).
6. D.V.Rao, R.Cesareo, G.E.Gigante, Phys. Scr. , 50 (1994).
7. D.V.Rao et al., Phys. Scr., 65 (2002).
8. C.C.Conti, M.J.Anjos, C.M.Salgado, X-Ray Spectrom., 46, 522 (2017).
9. Q.Zhang, Y.Guo, H.Bai et al., X-Ray Spectrom., 47, 4 (2018).
10. V.D.Hodoroaba, V.Rackwitz, Anal. Chem.. 86, 6858 (2014).
11. A.Manjunath, B.R.Kerur, Mater. Today: Proceed., 10, 4134 (2016).
12. I.F.Mikhailov, A.A.Baturin, A.I.Mikhailov et al., Rev. Sci. Instrum., 89, 023103 (2018).
13. I.F.Mikhailov, A.A.Baturin, A.I.Mikhailov, S.A.Knyazev, X-Ray Spectrom., 48, 604 (2019).
14. H.M.Pirenne, The Diffraction of X-rays and Electrons by Free Molecules, Cambridge University Press, Cambridge (1946).
15. W.Heisenberg, Phys. Zeitschr., 32, 737 (1931).
16. P.Duvauchelle, G.Peix, D.Babot, Nucl. Instrum. Meth. Phys. Res., 155 (1999).
17. R.W.James, in: the Crystalline State, ed. by L.Bragg, v.2, London (1950).
18. I.F.Mikhailov, A.A.Baturin, A.I.Mikhailov, S.V.Surovitskiy, X-Ray Spectrom., 49, 284 (2020).

Current number: