Funct. Mater. 2020; 27 4: 675-680.

doi:https://doi.org/10.15407/fm27.04.675

Optical-luminescent properties of liquid crystal systems with dispersed cerium oxide nanoparticles

A.N.Samoilov, V.V.Nesterkina, L.V.Budianska, S.S.Minenko, L.N.Lisetski

Institute for Scintillation Materials, STC Institute for Single Crystals National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

It is shown that suspensions of cerium oxide nanoparticles in the nematic 5CB phase undergo nonmonotonic changes in optical density with an increase in CeO2 concentration with maximum transmission noted at a level of ~ 0.03 wt.%. With a further increase in the CeO2 content above this threshold, as well as in the entire concentration range in the isotropic phase, the optical density increased as it could be expected. The luminescence of cerium oxide nanoparticles was of low intensity and was almost completely overlapped by the 5CB luminescence band. However, with other liquid crystal matrices, clear CeO2 luminescence bands were observed at ~ 330 nm under excitation at ~ 270 nm for three samples of nanoparticles of different sizes and different manufacturers.

Keywords: 
cerium oxide nanoparticles, nematic 5CB phase, luminescence, liquid crystal matrices.
References: 
1. M.Rahman, W.Lee, J. Phys. D: Appl. Phys., 42, 063001-1-12 (2009).
https://doi.org/10.1088/0022-3727/42/6/063001
 
2. L.N.Lisetski, A.P.Fedoryako, A.N.Samoilov et al., Eur. Phys. J. E, 37, 68-1-7 (2014).
https://doi.org/10.1140/epje/i2014-14068-3
 
3. L.Lisetski, M.Soskin, N.Lebovka, in: Phys. Liq. Matter Mod. Probl., ed. by L.Bulavin, N.Lebovka, Springer Proc. Phys., v.171, Springer Intern. Publishing Switzerland (2015), p.243.
https://doi.org/10.1007/978-3-319-20875-6_10
 
4. L.A.Bulavin, L.N.Lisetski, S.S.Minenko et al., J. Mol. Liq., 267, 279 (2018).
https://doi.org/10.1016/j.molliq.2017.12.078
 
5. N.Lebovka, L.Lisetski, L.A.Bulavin, in: Modern Problems of the Physics of Liquid Systems, ed. by L.A.Bulavin and L.Xu, Springer Proc. Phys., v.223, Springer Nature Switzerland AG (2019), p.137.
https://doi.org/10.1007/978-3-030-21755-6_6
 
6. J.Prakash, S.Khan, S.Chauhan, A.M.Biradar, J. Mol. Liq., 297, 1 (2020).
https://doi.org/10.1016/j.molliq.2019.112052
 
7. Y.Garbovskiy, Crystals, 8, 264 (2018).
https://doi.org/10.3390/cryst8070264
 
8. Y.Reznikov, A.Glushchenko, Y.Garbovskiy, in: Liquid Crystals with Micro- and Nanoparticles, ed. by J.Lagerwall, G.Scalia, World Scientific, Singapore (2017), p.657.
https://doi.org/10.1142/9789814619264_0019
 
9. R.Katiyar, G.Podhak, K.Agrahari et al., Mol. Cryst. Liq. Cryst., 691, 50 (2019).
https://doi.org/10.1080/15421406.2019.1702811
 
10. C.Y.Huang, P.Selvaraj, G.Senguttuvan, C.J.Hsu, J. Mol. Liq., 286, 110902 (2019).
https://doi.org/10.1016/j.molliq.2019.110902
 
11. A.Mouhli, H.Ayeb, T.Othman et al., Phys. Rev.E, 96, 012706 (2017).
https://doi.org/10.1103/PhysRevE.96.012706
 
12. H.-Y.Mun, H.-G.Park, H.-C.Jeong et al., Liq. Cryst., 44, 538 (2017).
https://doi.org/10.1080/02678292.2016.1225838
 
13. L.N.Lisetski, L.N.Zavora, N.A.Kasian et al., Mol. Cryst. Liq. Cryst., 510, 106 (2009).
https://doi.org/10.1080/15421400903058692
 
14. M.B.Malynovskyi, M.M.Sevryukova, Yu.P.Piryatinski, Biophys.Bull., No.43, 45 (2020).
https://doi.org/10.1557/mrs.2019.293
 
15. I.N.Bazhukova, S.Yu.Sokovnin, V.G.Ilves et al., Opt. Mater., 92, 136 (2019).
https://doi.org/10.1016/j.optmat.2019.04.021
 
16. S.Sathyamurthy, K.J.Leonard, R.T.Dabestani, M.P.Paranthaman, Nanotechn., 16, 1960 (2005)
https://doi.org/10.1088/0957-4484/16/9/089
 
17. M.M.Ali, H.S.Mahdi, A.Parveen, A.Azam, AIP Conf.Proc., v.1953, 030044 (2018).
 
18. R.C.Deus, C.R.Foschini, B.Spitova et al., Ceram. Intern., 40, 1 (2014).
https://doi.org/10.1016/j.ceramint.2013.06.043
 
19. R.C.Deus, J.A.Cortes, M.A.Ramirez et al., Mater. Res. Bull., 70, 416 (2015).
https://doi.org/10.1016/j.materresbull.2015.05.006
 
20. G.Jayakumar, A.A.Irudayaraj, A.Dhayal Raj, M.Anusuya. Nanosystems: Phys., Chem., Mathem., 7, 728 (2016).
https://doi.org/10.17586/2220-8054-2016-7-4-728-731
 
21. A.I.Goncharuk, N.I.Lebovka, L.N.Lisetski, S.S.Minenko, J. Phys. D: Appl. Phys., 42, 165411 (2009).
https://doi.org/10.1088/0022-3727/42/16/165411
 
22. A.N.Samoilov, S.S.Minenko, A.P.Fedoryako et al., Functional Materials, 21, 190 (2014).
https://doi.org/10.15407/fm21.02.190
 
23. N.I.Lebovka, N.V.Vygornitskii, L.A.Bulavin et al., J. Mol. Liq., 272, 1025 (2018).
https://doi.org/10.1016/j.molliq.2018.10.117
 
24. L.N.Lisetski, S.S.Minenko, A.N.Samoilov, N.I.Lebovka, J. Mol. Liq., 235, 90 (2017).
https://doi.org/10.1016/j.molliq.2016.11.125

Current number: