Funct. Mater. 2020; 27 4: 703-709.

doi:https://doi.org/10.15407/fm27.04.703

Elements of the fifth group (semimetals) and their alloys - are they the new high-temperature super-conductors?

Yu.I.Boyko1, V.V.Bogdanov1, R.V.Vovk1, B.V.Grinyov2

1V.Karazin Kharkiv National University, 4 Svobody Sq.,61022 Kharkiv, Ukraine 2Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Based on the BCS (Bardeen, Cooper, Schrieffer) microscopic quantum theory of super-conductivity, an analysis of the electrical conductivity of the elements of fifth group of the periodic system (semimetals) under external pressure is performed. It is shown that, under the action of a pressure P≈107 Pa, semimetals can transform into metals characterized by a specific energy spectrum of electrons. A change in the structure of semimetals and in the parameters of the energy spectrum of the electronic subsystem is accompanied by an increase in the electron pairing constant and the density of electronic states at the Fermi level. In turn, an increase in these parameters makes it possible to transfer semimetals to the superconducting state at a temperature of ≈300 K.

Keywords: 
High-Temperature Superconductivity (HTSC), semimetals, percolation effect.
References: 
1. J.Bardeen, L.N.Cooper, J.R.Schrieffer, Phys. Rev., 108, 1175 (1957).
https://doi.org/10.1103/PhysRev.108.1175
 
2. J.G.Bednorz, K.A.Muller, Z. Phys., Condens. Matter., B64, 189 (1986).
https://doi.org/10.1007/BF01303701
 
3. M.K.Wu et al., Phys. Rev. Lett., 58, 908 (1987).
https://doi.org/10.1103/PhysRevLett.58.908
 
4. F.C.Zhang, T.M.Rice, Phys. Rev., Condens. Matter., B37, 3759 (1988).
https://doi.org/10.1103/PhysRevB.37.3759
 
5. R.V.Vovk, A.L.Solovyov, Low Temper. Phys., 44, 81 (2018).
https://doi.org/10.1063/1.5020905
 
6. A.L.Solovjov, E.V.Petrenko, L.V.Omelchenko et al., Sci. Rep., 9, 9274 (2019).
https://doi.org/10.1038/s41598-019-45286-w
 
7. A.L.Solovjov, L.V.Omelchenko, E.V.Petrenko et al., Sci. Rep., 9, 20424 (2019).
https://doi.org/10.1038/s41598-019-55959-1
 
8. Y.Li, J.Hao, H.Liu et al., J. Chem. Phys., 140, 174 (2014).
 
9. A.P.Drosdov, M.I.Eremets, I.A.Troyan et al., Nature, 525, 73 (2015).
https://doi.org/10.1038/nature14964
 
10. N.W.Ashcroft, Phys. Rev. Lett., 92, 187002 (2004).
https://doi.org/10.1103/PhysRevLett.92.187002
 
11. F.Peng, Y.Sun, C.J.Pickard et al., Phys. Rev. Lett., 119, 107007 (2017).
https://doi.org/10.1103/PhysRevLett.119.107001
 
12. H.Liu, I.I.Naumov, R.Hoffman et al., Proc. Nat. Acad. Sci., 114, 6990 (2017).
https://doi.org/10.1073/pnas.1704505114
 
13. M.Somayzulu, M.Ahart et al., Phys. Rev. Lett., 122, 027001 (2019).
https://doi.org/10.1103/PhysRevLett.122.027001
 
14. Yu.I.Boyko, V.V.Bogdanov, R.V.Vovk, Fiz. Nizkich Temperatur, 46, 658 (2020).
https://doi.org/10.1063/10.0001061
 
15. V.Kresin, H.Gutfreund, W.Little, Sol. State Common. 51, 339 (1984).
https://doi.org/10.1016/0038-1098(84)90701-4
 
16. M.P.Slavinskij, Fiziko-chimicheskie Svojstva Elementov (1952) [in Russian].
 
17. A.S.Davydov, Teoriya Tverdogo Tela, Nauka, Moscow (1976) [in Russian].
 
18. Ya.A.Ugaj, Fazovoe Ravnovesie Mezhdu Fosforom, Myshyakom, Sur'moj i Vismutom, Nauka, Moscow (1989) [in Russian].
 
19. K.Malik, D.Das et al., J. Appl. Phys., 112, 083706 (2012).
https://doi.org/10.1063/1.4759137
 
20. A.N.Doroshenko, Dissertatsiya, Universitet KhPI, Kharkov (2019).
 
21. D.Stauffer, A.Aharony, Introduction to Percolation Theory, Washington, Taylor and Francis (1992).

Current number: