Funct. Mater. 2020; 27 4: 716-722.


Features of the contact interaction in the AlB12-NiCrBSiC system

A.E.Terentiev, A.P.Umanskyi, V.P.Konoval, V.B.Muratov, M.S.Storozhenko, A.A.Vasiliev

I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03680 Kyiv, Ukraine


The contact interaction between a NiCrBSiC self-fluxing eutectic alloy and hot-pressed α-AlB12 aluminium dodecaboride ceramics has been investigated by the sessile drop method in vacuum at a temperature of 1823 K. The wetting kinetics was studied, and contact angles in this system were determined. It was found that the self-fluxing alloy wets the AlB12 ceramics with the formation of the contact angle θ = 35-40 deg, and in this case the interaction occurs due to the dissolution of the ceramics along the grain boundaries. The processes of diffusion of B and Al from the ceramic substrate into the NiCrBSiC drop are initiated, leading to a change in the chemical composition of the drop. Thus, according to the criterion of the contact angle and due to the intense nature of the interphase interaction in the self-fluxing alloy-AlB12 system, the use of the technology of liquid-phase sintering in the development of composite powder materials for wear-resistant thermal coatings is undesirable.

self-fluxing alloy, aluminium dodecaboride ceramics, wetting, contact angle, interfacial zone, metal-ceramic material.
1. N.A.Klinskaya-Rudenskaya, B.P.Kuzmin, Fiz. Khim. Obrab. Met., 1, 55 (1996).
2. A.N.Stepanchuk, M.B.Shevchuk, A.A.Demidenko, Tsvetn. Met., 1, 63 (2014).
3. M.S.Storozhenko, A.P.Umanskii, A.E.Terentiev, I.M.Zakiev, Powder Metall. Met. Ceram., 56, 60 (2017).
4. A.J.Horlock, D.G.McCartney, P.H Shipway, J.V.Wood, Mater. Sci., A336, 88 (2002).
5. R.Rachidi, B.Kihel, F.Delaunois et al., Mater. Environ. Sci., 8, 4550 (2017).
6. L.C.Betancourt-Dougherty, R.W.Smith, Wear, 217, 147 (1998).
7. Q.Li, T.C.Lei, W.Z.Chen, Surf. Coat. Technol., 114, 278 (1999).
8. A.Surzhenkov, A.Vallikiv, V.Mikli et al., The 2nd Intern. Conf. Manufact. Engin. Management, 33 (2012).
9. O.Umanskyi, M.Storozhenko, I.Hussainova et al., Medzhygotyra, 22, 15 (2016).
10. O.Umanskyi, M.Storozhenko, M.Antonov et al., Key Eng. Mat., 604, 16 (2019).
11. A.A.Ivanko, Hardness: A Handbook, Naukova Dumka, Kiev (1968).
12. G.V.Samsonov, T.I.Serebyakova, V.N.Neronov, Borides: A Handbook, Atomizdat, Moscow (1975) [in Russian].
13. P.S.Kislyi, V.A.Neronov, T.A.Prikhna, Yu.V.Bevza, Aluminum Borides, Naukova Dumka, Kiev (1990) [in Russian].
14. A.Prikhna, R.R.Barvitskyi, M.B.Karpets, J. Superhard Mater., 39, 299 (2017).
15. O.Umanskyi, M.Storozhenko, V.Krasovskyi, M.Pareyko, J. Superhard Mater., 99, 39 (2017).
16. P.S.Kislyi, N.I.Bondaruk, M.S.Borovikova et al., Cermets, Naukova Dumka, Kiev (1985).
17. L.I.Tuchinskii, Composite Materials Obtained by the Impregnation Method, Metallurgiya, Moscow (1986) [in Russian].
18. Yu.V.Naidich, Contact Phenomena in Metallic Melts, Naukova Dumka, Kiev (1972).
19. A.P.Umanskii, M.S.Storozhenko, A.E.Terentiev, I.S.Martsenyuk, Powder Metall. Met. Ceram., 53, 359 (2014).
20. A.E.Terentiev, Functional Materials, 26, 507 (2019).
21. M.Storozhenko, O.Umanskyi, V.Krasovskyi et al., J. Alloys Compd.,778, 15 (2019).
22. A.Ya.Kulik, Yu.S.Borisov, A.S.Mnukhin, Thermal Spraying of Composite Powders, Mechanical Engineering, Leningrad, (1985) [in Russian].
23. A.E.Terentjev, Probl. Tribology, 1, 77 (2014).

Current number: