Funct. Mater. 2020; 27 4: 774-780.

doi:https://doi.org/10.15407/fm27.04.774

Influence of nanodiamonds on the structure and thermophysical properties of polyethylene glycol-based systems

E.A.Lysenkov, I.P.Lysenkova

P.Mohyla Black Sea National University, 10, 68 Desantnykiv Str., 54003 Mykolaiv, Ukraine

Abstract: 

The structure features and properties of nanocomposites based on polyethylene glycol (PEG) and nanodiamonds were investigated using the methods of X-ray diffraction, differential scanning calorimetry and optical microscopy. Systems based on crystalline PEG and detonation synthesized nanodiamonds were prepared by ultrasonic dispersion in melt. It has been shown that the structure and properties of PEG-based nanocomposites are significantly dependent on the content of the nanofillers. It was found that in the concentration range of 1-1.5 % nanofiller in the system, structural and thermophysical characteristics, such as crystallinity, effective crystallite size and melting temperature, exhibit extreme behavior. At these concentrations, the particles of nanodiamonds have the largest surface of polymer-filler interaction. The concentration dependence of the thermal conductivity coefficient exhibits percolation-like behavior. This effect is observed when the content of nanodiamonds is 1 % and is confirmed by optical microscopy data. The phenomenon of a step-like increase in thermal conductivity is explained by the formation of a structural network of filler particles in the PEG matrix.

Keywords: 
nanodiamonds, nanocomposites, polyethylene glycol, X-ray diffraction, differential scanning calorimetry, thermal conductivity.
References: 
1. S.H.Park, J.Bae, Recent Pat. Nanotechnol., 11, 109 (2017).
https://doi.org/10.2174/1872210510666161027155916
 
2. E.Lysenkov, I.Melnyk, L.Bulavin et al., in: Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics, Springer International Publishing, Switzerland (2015), p.165.
https://doi.org/10.1007/978-3-319-20875-6_7
 
3. G.Mittal, V.Dhand, K.Y.Rhee et al., J. Industr. Engin. Chem., 21, 11 (2015).
https://doi.org/10.1016/j.jiec.2014.03.022
 
4. S.Fu, Z.Sun, P.Huang et al., Nano Mater. Sci., 1, 2 (2019).
https://doi.org/10.1016/j.nanoms.2019.02.006
 
5. B.Sreenivasulu, B.R.Ramji, M.Nagaral, Mater. Today: Proceed., 5, 2419 (2018).
https://doi.org/10.1016/j.matpr.2017.11.021
 
6. P.Karami, S.S.Khasraghi, M. Hashemi et al., Advan. Colloid and Interface Sci., 269, 122 (2019).
https://doi.org/10.1016/j.cis.2019.04.006
 
7. E.A.Lysenkov, E.V.Lobko, V.V.Klepko et al., Functional Materials, 25, 75 (2018).
https://doi.org/10.15407/fm25.01.075
 
8. F.Ostadhossein, N.Mahmoudi, G.Morales-Cid et al., Materials, 8, 6401 (2015).
https://doi.org/10.3390/ma8095309
 
9. Q.Zhang, V.N.Mochalin, I.Neitzel et al., Biomaterials, 33, 5067 (2012).
https://doi.org/10.1016/j.biomaterials.2012.03.063
 
10. S.Morimune, M.Kotera, T.Nishino et al., Macromolecules, 44, 4415 (2011).
https://doi.org/10.1021/ma200176r
 
11. N.Song, D.Cao, X.Luo et al., J. Mater. Chem. C, 6, 13108 (2018).
https://doi.org/10.1039/C8TC04309D
 
12. B.Nan, K.Wu, W.Chen et al., Appl. Surf. Sci., 508, 144797 (2020).
https://doi.org/10.1016/j.apsusc.2019.144797
 
13. R.Arrigo, G.Ruisi, R.Teresi et al., J. Nanomater., Art. ID 5436823, 9 (2016).
https://doi.org/10.1155/2016/5436823
 
14. N.I.Lebovka, E.A.Lysenkov, A.I.Goncharuk et al., J. Compos. Mater., 45, 2555 (2011).
https://doi.org/10.1177/0021998311401107
 
15. U.Holzwarth, N.Gibson, Nature Nanotech., 6, 534 (2011).
https://doi.org/10.1038/nnano.2011.145
 
16. J.L.Matthews, H.S.Peiser, R.B.Richards, Acta Crystallogr., 2, 85 (1949).
https://doi.org/10.1107/S0365110X49000199
 
17. H.-W.Chen, F.-C.Chang, Polymer, 42, 9763 (2001).
https://doi.org/10.1016/S0032-3861(01)00520-1
 
18. M.Hashemi, A.Shojaei, Poly. Int., 66, 950 (2017).
https://doi.org/10.1002/pi.5343
 
19. E.Y.Choi, K.Kim, C.K.Kim et al., Scient. Rep., 6, 37010 (2016).
https://doi.org/10.1038/srep37010
 
20. R.S.Jagadish, B.Raj, P.Parameswara et al., J. Appl. Polym. Sci., 127, 1191 (2012).
https://doi.org/10.1002/app.37616
 
21. E.A.Lysenkov, V.V.Klepko, Ukr. J. Phys., 56, 484 (2011). http://archive.ujp.bitp.kiev.ua/ index.php?item=j&id=139
 
22. E.A.Lysenkov, V.V.Klepko, I.P.Lysenkova, J. Nano- Electron. Phys., 9, 05021 (2017).
https://doi.org/10.21272/jnep.9(5).05021
 
23. S.V.Kidalov, F.M.Shakhov, A.Ya.Vul, Diamond and Related Materials, 17, 844 (2008).
https://doi.org/10.1016/j.diamond.2008.01.091
 
24. E.A.Lysenkov, V.V.Klepko, J.Engin. Phys. Thermophys., 88, 1008 (2015).
https://doi.org/10.1007/s10891-015-1278-3
 
25. Y.Xu, G.Ray, B.Abdel-Magid, Composites A, 37, 114 (2006).
https://doi.org/10.1016/j.compositesa.2005.04.009

Current number: