Funct. Mater. 2020; 27 4: 786-793.

doi:https://doi.org/10.15407/fm27.04.786

Cyclic structuring of epoxy polymers under the influence of microwave electromagnetic radiation

V.Kashytskyi, P.Savchuk, V.Malets, O.Sadova, O.Hulai

Lutsk National Technical University, 75 Lvivska Str., 43018 Lutsk, Ukraine

Abstract: 

For epoxy polymer compositions, the influence of the duration of treatment with electromagnetic ultra-high-frequency radiation on the amount of released thermal energy is determined in the article. The optimum duration of exposure of the epoxypolymer compositions in the electromagnetic field at the first stage and the temperature to which it is necessary to cool the composition to obtain the optimum amount of thermal energy have been determined. The dynamics of temperature change in time on the surface of the compositions was investigated depending on the volume of the samples, their shape and the duration of processing. Fractograms of destruction of epoxy polymers structured by cyclic processing under the action of microwave electromagnetic radiation have been investigated. The expediency of using a cyclic mode of treatment of the compositions in an electromagnetic field to intensify the structuring process of epoxy polymers is shown.

Keywords: 
electromagnetic field, thermal energy, epoxy polymer composition, fracture planes, cleavage lines.
References: 
1. I.Zlobina, N.Bekrenev, Mater. Engin. Techn. Product. Process. II: Solid State Phenomena, 870, 101 (2016).
 
2. A.V.Buketov, P.D.Stukhlyak, I.H.Dobrotvor, et al., Strenght Mater., 41, 431 (2009).
https://doi.org/10.1007/s11223-009-9136-1
 
3. I.H.Dobrotvor, P.D.Stukhlyak, A.V.Buketov, Mater. Sci., Chem. Mater. Sci., 45, 790 (2009).
https://doi.org/10.1007/s11003-010-9244-x
 
4. M.V.Brailo, A.V.Buketov, N.N.Yakuschenko et al., Mater. Perform. Character., 7, 135502 (2002).
 
5. PA.V.Buketov, A.A.Sapronov, N.N.Buketova et al., Composites: Mechanics, Computations, Applications: Intern. J., 9, 157 (2018).
https://doi.org/10.1615/CompMechComputApplIntJ.v9.i2.30
 
6. W.Liang, T.Huang, D.Lu et al., Polymers, 11, 133 (2019).
https://doi.org/10.3390/polym11010133
 
7. P.Savchuk, V.Kashytskyi, V.Malets et al., Proc. Int. Conf. Actual Problems of Engineering Mechanics, APEM 2019, Odesa, Ukraine, v.968 MSF (2019), p.176.
https://doi.org/10.4028/www.scientific.net/MSF.968.176
 
8. S.Hara, S.Watanabe, K.Takahashi et al., Polymers, 10, 1083 (2018).
https://doi.org/10.3390/polym10101083
 
9. C.Zimmerer, C.S.Mejia, T.Utech et al., Polymers, 11, 535 (2019).
https://doi.org/10.3390/polym11030535
 
10. D.Bogda, P.Penczek, Ja.Pielichowski, A.Prociak, Adv. Polymer Sci., 163, 51 (2003).
 
11. R.Hoogenboom, U.S.Schubert, Macromolec. Rapid Commun., 28, 368 (2007).
https://doi.org/10.1002/marc.200600749
 
12. F.Wiesbrock, R.Hoogenboom, U.S.Schubert, Macromolec. Rapid Commun., 25, 1739 (2004).
https://doi.org/10.1002/marc.200400313
 
13. M.Chen, E.J.Siochi, T.C.Ward, J.E.McGrath, Polymer Engin. Sci., 33, 1092 (1993).
https://doi.org/10.1002/pen.760331703
 
14. V.V.Azharonok, A.G.Anisovich, V.V.Biran et al., Surf. Engin. Appl. Electrochem., 50, 300 (2014).
https://doi.org/10.3103/S1068375514040024
 
 

.

Current number: