Funct. Mater. 2020; 27 4: 811-819.

doi:https://doi.org/10.15407/fm27.04.811

Investigation of microstructure and photocatalytic activity of quartz sand composite supported by hierarchical porous TiO2

Wei He, Gang Liao

Department of Traffic and Municipal Engineering, Sichuan College of Architectural Technology, 610399 Chengdu, China

Abstract: 

In this paper, the synthesis of quartz sand coated with a hierarchical porous TiO2 composite is reported. The synthesis was realized by the hydrolysis of tetrabutyl orthotitanate on natural quartz sand and followed by hydrothermal treatment. The phase composition of the as-prepared composites was studied by interpretation of X-ray diffraction patterns. The morphology of the composites was analyzed using a scanning electron microscope. The pore-size distribution and specific surface area of the composites were characterized by the N2 adsorption-desorption test. The photocatalytic activity of the composites was evaluated by the photocatalytic decomposition of gaseous HCHO under UV irradiation. The results show that the hierarchical macro-/mesopore structure plays a key role in enhancing the photocatalytic activity of the composite, which can reach 79.2 % h-1. After 5 repeated tests, the composites still retained high photocatalytic activity.

Keywords: 
quartz sand, ierarchically porous structure, photocatalytic activity.
References: 
1. A.Fujishima, K.Honda, Nature, 238, 37 (1972).
https://doi.org/10.1038/238037a0
 
2. S.N.Frank, A.J.Bard, J. Phys. Chem., 81, 1484 (1977).
https://doi.org/10.1021/j100530a011
 
3. I.Sopyan, M.Watanabe, S.Murasawa et al., J. Photochem. Photobiol. A Chem., 98, 79 (1996).
https://doi.org/10.1016/1010-6030(96)04328-6
 
4. M.T.Amin, A.A.Alazba, U.Manzoor, Adv. Mater. Sci. Eng., 2014, 825910 (2014).
 
5. Y.Xiaodan, W.Qingyin, J.Shicheng, G.Yihang, Mater. Charact., 57, 333 (2006).
https://doi.org/10.1016/j.matchar.2006.02.011
 
6. Y.Yu, J.Geng, H.Li et al., Sol. Energy Mater. Sol. Cells, 168, 91 (2017).
https://doi.org/10.1016/j.solmat.2017.04.023
 
7. Y.Gu, M.Xing, J.Zhang, Appl. Surf. Sci., 319, 8 (2014).
https://doi.org/10.1016/j.apsusc.2014.04.182
 
8. H.Yoneyama, T.Torimoto, Catal. Today, 58, 133 (2000).
https://doi.org/10.1016/S0920-5861(00)00248-0
 
9. S.Hamzezadeh-Nakhjavani, O.Tavakoli, S.P.Akhlaghi et al., Environ. Sci. Pollut. Res. Int., 22, 18859 (2015).
https://doi.org/10.1007/s11356-015-5032-3
 
10. T.A.Egerton, I.R.Tooley, J. Phys. Chem. B, 108, 5066 (2004).
https://doi.org/10.1021/jp0378992
 
11. J.R.Kim, E.Kan, J. Environ. Manage., 180, 94 (2016).
https://doi.org/10.1016/j.jenvman.2016.05.016
 
12. O.A.Zelekew, D.-H.Kuo, J.M.Yassin et al., Appl. Surf. Sci., 410, 454 (2017).
https://doi.org/10.1016/j.apsusc.2017.03.089
 
13. G.Liao, W.He, Y.He, Catalysts, 9, 502 (2019).
https://doi.org/10.3390/catal9060502
 
14. K.Guesh, C.Marquez-Alvarez, Y Chebude, I.Diaz, Appl. Surf. Sci., 378, 473 (2016).
https://doi.org/10.1016/j.apsusc.2016.04.029
 
15. I.Jansson, S.Suarez, F.J.Garcia-Garcia, B.Sanchez, Appl. Catal. B, 178, 100 (2015).
https://doi.org/10.1016/j.apcatb.2014.10.022
 
16. B.Erjavec, P.Hudoklin, K.Perc et al., Appl. Catal. B:Envir., 183, 149 (2016).
https://doi.org/10.1016/j.apcatb.2015.10.033
 
17. X.Wang, X.Wang, J.Zhao et al., Chem. Eng. J., 320, 253 (2017).
https://doi.org/10.1016/j.cej.2017.03.062
 
18. J.-G.Yu, H.-G.Yu, B.Cheng et al., J. Phys. Chem. B, 107, 13871 (2003).
https://doi.org/10.1021/jp036158y
 
19. Y.Chen, E.Stathatos, D.D.Dionysiou, Surf. Coat. Technol., 202, 1944 (2008).
https://doi.org/10.1016/j.surfcoat.2007.08.041
 
20. K.Eufinger, D.Poelman, H.Poelman et al., J. Phys. D:Appl. Phys., 40, 5232 (2007).
https://doi.org/10.1088/0022-3727/40/17/033
 
21. G.Zhang, S.Zhang, L.Wang et al., Appl. Surf. Sci., 391, 228 (2017).
https://doi.org/10.1016/j.apsusc.2016.04.095
 
22. X.Li, J.Sun, Y.Che et al., Int. J. Biol. Macromol., 121, 760 (2019).
https://doi.org/10.1016/j.ijbiomac.2018.10.123
 
23. L.Yang, A.Hakki, L.Zheng et al., Cem. Concr. Res., 116, 57 (2019).
https://doi.org/10.1016/j.cemconres.2018.11.002
 
24. S.Kamaruddin, D.Stephan, Cem. Concr. Compos., 36, 109 (2013).
https://doi.org/10.1016/j.cemconcomp.2012.08.007
 
25. J.Tokarsky, V.Matejka, L.Neuwirthova et al., Chem. Eng. J., 222, 488 (2013).
https://doi.org/10.1016/j.cej.2013.02.056
 
26. J.H.Jiang, G.Liao, Functional Materials, 27, 622 (2020).
 
27 R.Wang, K.Lan, B.Liu et al., Chem. Phys., 516, 48 (2019).
https://doi.org/10.1016/j.chemphys.2018.08.025
 
28. P.Wang, J.Wang, H.Yu et al., Mater. Res. Bull., 74, 380 (2016).
https://doi.org/10.1016/j.materresbull.2015.11.004
 
29. Z.Zhou, T.Zeng, Z.Cheng, W.Yuan, Ind. Eng. Chem. Res., 50, 883 (2011).
https://doi.org/10.1021/ie101697t
 
30. B.Jin, J.He, L.Yao et al., ACS Appl. Mater. Interfaces, 9, 17466 (2017).
https://doi.org/10.1021/acsami.7b04140
 
31. J.Yu, Y.Su, B.Cheng, M.Zhou, J. Mol. Catal. A:Chem., 258, 104 (2006).
https://doi.org/10.1016/j.molcata.2006.05.036
 
32. K.S.W.Sing, D.H.Everett, R.A.W.Haul et al., Pure Appl. Chem., 57, 603 (1985).
https://doi.org/10.1351/pac198557040603
 
33. J.Yu, L.Zhang, B.Cheng, Y.Su, J. Phys. Chem. C, 111, 10582 (2007).
https://doi.org/10.1021/jp0707889
 
34. L.Nie, J.Yu, X.Li et al., Environ. Sci. Technol., 47, 2777 (2013).
https://doi.org/10.1021/es3045949
 
35. X.Wang, J.C.Yu, C.Ho et al., Langmuir, 21, 2552 (2005).
https://doi.org/10.1021/la047979c
 
36. J.Yu, Y.Su, B.Cheng, Adv. Funct. Mater., 17, 1984 (2007).
https://doi.org/10.1002/adfm.200600933
 
 
 

Current number: