Funct. Mater. 2020; 27 4: 836-845.

doi:https://doi.org/10.15407/fm27.04.836

Comparison of water-soluble squaraine and norsquaraine as fluorescent material for biomedical applications

I.V.Hovor1, O.S.Kolosova1, O.M.Obukhova1, A.L.Tatarets1, L.D.Patsenker2

1SSI Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, 40700 Ariel, Israel

Abstract: 

Spectral and photophysical properties of norsquaraine dye Nor-Sq were investigated and compared with those for 3-carboxypentyl substituted squaraine Sq in aqueous buffer solutions, organic solvents and under interactions with proteins in order to obtain fluorescent labels for proteins with improved properties. Both dyes absorb and fluoresce in the same spectral region, but Sq has higher the molar absorptivity and is much more sensitive to polarity and viscosity of the medium, as well as to the presence of proteins. The absence of a substituent at the nitrogen atom in norsquaraine molecule provides the pH-sensitivity of Nor-Sq in the range of 9.0-11.4. As a result, Sq is more preferable for using in the most of biomedical applications, where interaction with proteins increases the brightness of the dye due to changes of polarity and/or viscosity of environment, while Nor-Sq is applicable for pH monitoring and in assays, where signal should not depend on changes in dye molecule environment.

Keywords: 
norsquaraines, squaraines, protein conjugates, fluorescent pH-sensors.
References: 
1. R.G.Haugland, The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Life Technologies Corporation (2010).
 
2. A.Brahme, Comprehensive Biomedical Physics, Elsevier Science (2014).
 
3. J.O.Escobedo, O.Rusin, S.Lim, R.M.Strongin, Curr. Opin. Chem. Biol., 14, 64 (2010).
https://doi.org/10.1016/j.cbpa.2009.10.022
 
4. L.Patsenker, A.Tatarets, O.Kolosova et al., Ann. NY Acad. Sci., 1130, 179 (2008).
https://doi.org/10.1196/annals.1430.035
 
5. Z.Zheng, Development of Far-Red/Near-Infrared Luminescent Chromophores and Nanoparticles for in vivo Biphotonic Applications, Universite de Lyon (2016).
 
6. M.Sameiro, T.Goncalves, Chem. Rev., 109, 190 (2009).
https://doi.org/10.1021/cr0783840
 
7. T.D.Martins, M.L.Pacheco, R.E.Boto et al., Dyes and Pigments, 147, 120 (2017).
https://doi.org/10.1016/j.dyepig.2017.07.070
 
8. G.Xia, H.Wang, J. Photochem. Photobiol. C: Photochem. Rev., 31, 84 (2017).
 
9. I.V.Hovor, O.S.Kolosova, E.V.Sanin et al., Dyes and Pigments, 170, 107567 (2019).
https://doi.org/10.1016/j.dyepig.2019.107567
 
10. O.S.Kolosova, S.V.Shishkina, V.Marks et al., Dyes and Pigments, 163, 318 (2019).
https://doi.org/10.1016/j.dyepig.2018.12.007
 
11. W.-Y.Leung, Ch.-Y.Cheung, S.Yue, U.S. Patent US9423323B2 (2016).
 
12. J.E.Berlier, A.Rothe, G.Buller et al., J. Histochem. Cytochem., 51, 1699 (2003).
https://doi.org/10.1177/002215540305101214
 
13. L.D.Patsenker, A.L.Tatarets, Ye.A.Povrozin et al., Bioanal. Rev., 3, 115 (2011).
https://doi.org/10.1007/s12566-011-0025-2
 
14. B.Oswald, L.Patsenker, J.Duschl et al., Bioconj. Chem., 10, 925 (1999).
https://doi.org/10.1021/bc9801023
 
15. C.A.Parker, Photoluminescence of Solutions, Elsevier Publishing Company, Amsterdam, London and New York, (1968).
 
16. R.B.Mujumdar, L.A.Ernst, S.R.Mujumdar et al., Bioconj. Chem., 4, 105 (1993).
https://doi.org/10.1021/bc00020a001
 
17. S.R.Mujumdar et al., Bioconj. Chem., 7, 356 (1996).
https://doi.org/10.1021/bc960021b
 
18. J.T.Peters, in: All about Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, New York (1975).
 
19. A guide to Understanding Extinction Coefficients, with Emphasis on Spectrophotometric Determination of Protein Concentration, https://tools.thermofisher.com/content/sfs/brochures/TR0006-Extinction-c... (2013).
 
20. M.V.Reddington, Bioconj. Chem., 18, 2178 (2007).
https://doi.org/10.1021/bc070090y
 
21. C.Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed, Wiley-VCH, Weinheim (2003).
https://doi.org/10.1002/3527601791
 
22. R.Weissleder, Nature Biotechnology, 19, 316 (2001).
https://doi.org/10.1038/86684
 
23. H.Mustroph, K.Reiner, J.Mistol et al., Chem. Phys. Chem., 10, 835, (2009).
https://doi.org/10.1002/cphc.200800755
 
24. K.-Y.Law, J. Phys. Chem., 99, 981, (1995).
 
25. A.A Ishchenko, Structure and Spectral-luminescent Properties of Polymethine Dyes, Naukova Dumka, Kiev (1994).
 
26. A.Mishra, R.K.Behera, P.K.Behera et al., Chem. Rev., 100, 1973 (2000).
https://doi.org/10.1021/cr990402t
 
27. J.Park, C.Barolo, F.Sauvage et al., Chem. Commun., 48, 2782 (2012).
https://doi.org/10.1039/c2cc17187b
 
28. A.L.Tatarets, I.A.Fedyunyayeva, T.S.Dyubko et al., Anal. Chim. Acta, 570, 214 (2006).
https://doi.org/10.1016/j.aca.2006.04.019
 
29. N.Barbero et al., Chem. Asian. J., 14, 896 (2019).
https://doi.org/10.1002/asia.201900055
 
30. Y.Xu, Z.Li, A.Malkovskiy et al., J. Phys. Chem. B, 114, 8574 (2010).
https://doi.org/10.1021/jp1029536
 
31. K.D.Volkova, V.B.Kovalska, A.L.Tatarets et al., Dyes and Pigments, 72, 285 (2007).
https://doi.org/10.1016/j.dyepig.2005.09.007
 
32. Y.Chang-Ying, L.Yi, Zh.Dan et al., J. Photochem. and Photobiol. A: Chem., 188, 51 (2007).
 
33. A.Hawe, M.Sutter, W.Jiskoot, Pharmaceut. Res., 25, 1487 (2008).
https://doi.org/10.1007/s11095-007-9516-9
 
34. D.V.Nicolau Jr., E.Paszek, F.Fulga, D.V.Nicolau, PLOS ONE, 9, e114042 (2014).
https://doi.org/10.1371/journal.pone.0114042
 
35. L.I.Markova, E.A.Terpetschnig, L.D.Patsenker, Dyes and Pigments, 99, 561 (2013).
https://doi.org/10.1016/j.dyepig.2013.06.022

Current number: