Funct. Mater. 2020; 27 4: 846-849.

doi:https://doi.org/10.15407/fm27.04.846

Detection of permanganate based on copper nanoclusters as fluorescent probes

Yageng Bai1, Yu Cao2, Lin Zhu1, Xueling Cao1

1Department of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Str., 132022 Jilin, P. R. China
2Yamagata University Graduate School of Organic Materials Science, 4-3-16 Jonan, Yonezawa City, Japan.

Abstract: 

Copper nanoclusters (CuNCs@TA) with strong luminescence were synthesized by a one-step method with tannic acid as a ligand. Since MnO4- can quench the fluorescence peak of CuNCs@TA, a method for detecting MnO4- was developed based on copper nanoclusters as a fluorescent probe. The results show that as the concentration of MnO4- increases, the fluorescence emission spectrum intensity of CuNCs@TA is reduced. The linear range is 0.5-35 μM, and the minimum detection limit is 36 nM. The developed method has been used for analysis of actual water samples. This method can be more widely used in the determination of MnO4- in actual samples.

Keywords: 
copper nanoclusters, permanganate, content analysis, fluorescence probe.
References: 
1. E.Korkut, A.Saritas, Y.Aydin et al., World J. Emerg. Med., 4, 73 (2013).
https://doi.org/10.5847/wjem.j.issn.1920-8642.2013.01.014
 
2. K.L.Ong, T.H.Tan, W.L.Cheung, J. Accid. Emerg. Med., 14, 43 (1997).
https://doi.org/10.1136/emj.14.1.43
 
3. B.Ding, S.X. Liu, Y. Cheng et al., Inorg. Chem., 55, 4391 (2016).
https://doi.org/10.1021/acs.inorgchem.6b00111
 
4. E.J.Song, J.Kang, G.R.You et al., Dalton Trans., 42, 15514 (2013).
https://doi.org/10.1039/c3dt51635k
 
5. Z.O.Tesfaldet, J.F.Van Staden, R.I.Stefan, Talanta, 64, 1189 (2004).
https://doi.org/10.1016/j.talanta.2004.02.044
 
6. M.R.Ganjali, V.K.Gupta, M.Hosseini et al., Talanta, 88, 684 (2012).
https://doi.org/10.1016/j.talanta.2011.11.065
 
7. Y.J.Yang, M.Wang, K.L.Zhang, J. Mater. Chem., 4, 11404 (2016).
https://doi.org/10.1039/C6TC04195G
 
8. X.Fu, R.Lv, J.Su et al., RSC Adv., 8, 4766 (2018).
https://doi.org/10.1039/C7RA12252G
 
9. Z.Ye, R.Weng, Y.Ma et al., Anal. Chem., 90, 13044 (2018).
https://doi.org/10.1021/acs.analchem.8b04024
 
10. E.A.Ivleva, E.A.Obraztsova, E.R.Pavlova et al., Mater. Design, 192, 108771 (2020).
https://doi.org/10.1016/j.matdes.2020.108771
 
11. S.Thangudu, P.Kalluru, R.Vankayala, Bioeng., 7, 20 (2020).
https://doi.org/10.3390/bioengineering7010020
 
12. L.Yang, H.Wang, D.Li et al., Chem. Mater., 30, 5507 (2018).
https://doi.org/10.1021/acs.chemmater.8b02770
 
13. X.L.Cao, X.Li, F.X.Liu et al., Lumin., 33, 981 (2018).
https://doi.org/10.1002/bio.3498
 

Current number: