Funct. Mater. 2021; 28 1: 121-130.


Portland cement-based penetrating electrically conductive composition for protection against electrocorrosion

A.A.Plugin1, O.A.Pluhin1, V.V.Kasyanov2, O.I.Dyomina3, D.O.Bondarenko3

1Ukrainian State University of Railway Transport, 7 Feuerbach Sq., 61050 Kharkiv, Ukraine 2A.Beketov Kharkiv National University of Urban Economy, 17 Marshala Bazhanova Str., 61002 Kharkiv, Ukraine 3Kharkiv National University of Civil Engineering and Architecture, 40 Sumskaya Str., 61002 Kharkiv, Ukraine


A conductive composition of penetrating action based on Portland cement with a complex chemical additive and graphite filler has been developed. The composition is intended to protect reinforced concrete structures from electrocorrosion due to the formation of an electrically conductive coating on their surfaces with a simultaneous increase in the electrical resistance of the surface layer of the structure itself. Experimental studies have been carried out, incl. electron microscopic, spectroscopic, X-ray phase analysis. The regularities of the formation of the electrophysical and physical-mechanical properties of the composition, their dependence on the composition are established.

graphite, Portland cement, chemical additives, hydration, electrical conductivity.
1. I.V.Strizhevsky, A.D.Belogolovsky, V.I.Dmitriev et al., Protection of underground steel structures against corrosion, Stroyizdat, Moscow (1990) [in Russian].
2. L.E.Vrublevsky. Possibilities of Using Electrically Conductive Concrete (ECC) in Civil Engineering, Moscow (1971) [in Russian].
3. A.N.Lopanov, E.A.Fanina, O.N.Guzeeva, ARPN J. Engin. Appl. Sci., 9, 11 (2014).
4. O.V.Khrystych, M.S.Lemeshev, Bull. Vinnytsia Polyt. Inst., 2, 18 (1998).
5. A.N.Lopanov, E.A.Fanina, O.N.Tomarovshchenko, Bull. V. Shukhov BSTU, 1, 130 (2017).
6. V.R.Serdyuk, M.S.Lemeshev, O.V.Khrystych, Bull. Vinnytsia Polyt. Inst., 2, 5 (1997)
7. E.K.Pushkareva, S.G.Guziy, Budivnytstvo: Collect.Res. Papers of DIIT, 9, 54 (2001).
8. E.K.Pushkareva, S.G Guziy, Resource-saving Mater., Struct., Build. Struct.: Coll. Res. Papers RDTU, 5, 82 (2000).
9. E.K.Pushkareva, S.G.Guziy, Sci. Pract. Probl. Simul. Forecast. Emerg.: Coll. Res. Papers KNUCA 5, 23 (2002) [in Russian].
10. O.I.Demina, A.A.Plugin, E.B.Dedenyova et al., Functional Materials, 24, 415 (2017).
11. M.Balonis, B.Lothenbach, G.Le Saout, F.P.Glasser, Cem. Concr. Res., 40, 1009 (2010).
12. M.Balonis, M.Medala, F.P.Glasser, Adv. Cem. Res., 23, 129 (2011).
13. A.N.Lopanov, E.A.Fanina, O.N.Guzeeva. Bull. MGSU, 8, 78 (2016).
14. A.N.Lopanov, O.N.Guzeeva, I.V.Prushkovsky, K.V.Tikhomirova, ARPN J. Engin. Appl. Sci., 9, 2275 (2014).
15. A.F.Bernatsky, Y.V.Tselebrovsky, V.A.Chunchin, Electrical Properties of Concrete, Energiya, Moscow (1980) [in Russian].
16. O.Pluhin, A.Plugin, D.Plugin et al., Matec Web of Conference, 116, 01013 (2017).
17. B.B.Damaskin, O.A.Petry, G.A.Tsyrlina, Electrochemistry, Khimiya, Moscow (2006) [in Russian].

Current number: