Funct. Mater. 2021; 28 1: 14-21.


Structural, optical and luminescence features of Er3+/Yb3+ co-doped sol-gel silica glasses

I.Ya.Sulym1, P.Veteska2, R.Klement3, Z.Hajduchova2, J.Lokaj2, A.Gatial2, M.V.Borysenko1, M.Janek2,4, D.V.Gryn5, M.S.Iakhnenko5, A.P.Naumenko5

1Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
3FunGlass - Centre for Functional and Surface Functionalized Glass, TnUAD, Trencin, Slovak Republic
4Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
5Faculty of Physics, T.Shevchenko National University of Kyiv, Kyiv, Ukraine


The transparent erbium and ytterbium co-doped silica glasses having pink tint were obtained using a new variant of the sol-gel synthesis method. The amount of Er3+/Yb3+ cations introduced into the glass was quantitatively monitored by energy dispersive X-ray analysis. The produced Er3+/Yb3+ co-doped silica glasses (0.25-5 wt. Er2O3 and 2 wt. % Yb2O3) have a high optical homogeneity and contains OH groups in amount of 0.4-1 wt. %. Optical properties of samples were analyzed using UV-VIS absorption and luminescence spectroscopy. The changes in the luminescence spectra of glasses are related to the transitions of Er3+ and Yb3+ ions from glass matrix and correlate well with optical adsorption data. Upon excitation by a 978 nm Xe lamp, up-conversion emissions from Er3+ ions centered at 540 and 650 nm were greatly enhanced as the concentration of erbium oxide in the glasses increased. The proposed sol-gel synthesis method allows fabrication of the complex glass systems which have potential in the application of optoelectronic areas.

sol-gel glasses, Er<sup>3+</sup>/Yb<sup>3+</sup> ions, photoluminescence, optical absorbtion.

. M.Azam, R.V.Kumar, P.Mishra. J. Mater. Sci: Mater. Electron., 27, 12633 (2016).
2. L. Zhang, L.Hu, S.Jiang, Int. J. Appl. Glass Sci., 9, 90 (2018).
3. M.Sreenivasulu, A.S.Rao. J. Mater. Sci. Lett., 20, 737 (2001).
4. H.Desirena, E.De la Rosa, L.A.Diaz-Torres, G.A.Kumar. Opt. Mater., 28, 560 (2006).
5. K.Swapna, S.Mahamuda, M.Venkateswarlu et al., J. Luminescence, 163, 55 (2015).
6. B.Glorieux, T.Salminen, J.Massera et al., J, Non-Cryst. Solids, 482, 46 (2018).
7. K.Linganna, R.Narro-Garcia, P.Manasa et al., J. Rare Earths, 36, 58 (2018).
8. S.Stanek, P.Nekvindova, B.Svecova et al., J. Spirkova. Opt. Mater., 72, 183 (2017).
9. L.X.Yi, M.Wang, S.Y.Feng et al., Opt. Mater., 31, 1586 (2009).
10. W.A.Pisarski, L.Grobelnya, J.Pisarska et al., J. Alloys Compds., 509, 8088 (2011).
11. S.Tanabe, Int. J., Appl. Glass Sci.. 6, 305 (2015).
12. S.Rai, A.L.Fanai. J. Luminescence, 170, 325 (2016).
13. R.Ravikumar, A.V.Chandrasekhar, L.Ramamoorthy et al., J. Alloys Compd., 337, 272 (2002).
14. M.Ignatovych, M.Borysenko, L.Davydenko et al., Mat-wiss u Werkstofftech., 47, 193 (2016).
15. M.V.Borysenko, V.M.Bogatyrov, J. Sol-Gel Sci. Technol., 32, 327 (2004).
16. K.Kajihara, J. As. Ceram. Soc., 1, 121 (2013).
17. M.V.Borysenko, K.S.Kulyk, M.V.Ignatovych et al., in: Nanomaterials and Supramolecular Structures. Physics, Chemistry, and Applications, Springer, New York (2009).
18. E.N.Poddenezhny, A.A.Boiko, Synthesis of Optical Silica Glasses, Sukhoi GGTU, Gomel (2002).
19. D.Manzani, M.Montesso, C.F.Mathias et al., Opt. Mater., 57, 71 (2016).
20. B.Lai, L.Feng, J.Wang, Q.Su, Opt. Mater., 32, 1154 (2010).
21. V.D.Rodriguez, V.K.Tikhomirov, J.Mendez-Ramos et al., Sol. Energy Mater. Sol. Cells, 94, 1612 (2010).
22. K.Selvaraju, K.Marimuthu, J. Luminescence, 132, 1171 (2012).
23. S.Georgescu, A.M.Voiculescu, C.Matei et al., J. Luminescence, 143, 150 (2013).
24. L.T.N.Tran, D.Massella, L.Zur et al., Appl. Sci., 8, 1335 (2018).
25. W.A.Pisarski, J.Pisarska, R.Lisiecki, W.Ryba-Romanowski, Opt. Express, 25, 28501 (2017).

Current number: