Funct. Mater. 2021; 28 1: 151-157.

doi:https://doi.org/10.15407/fm28.01.151

Magic pore dynamics in clusters

M.A.Ratner1, V.V.Yanovsky2

1Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine 2Kharkiv National University, 4 Svobody Sq., 61000 Kharkiv, Ukraine

Abstract: 

Process of relaxation of nanocluster with an intrinsic pore was investigated by molecular dynamics method for different phase states of initial cluster. It was shown that, for the initially solid (the most ordered) cluster state, the system can reach metastable state where pore radius is fixed at one of magic values that corresponds to minimum of the brocken bond numbe. The analogy is made with magic clusters that demonstrate unusual physical properties.

Keywords: 
Cluster, magic numbers, phase state, pore, nonequilibrium process, relaxation.
References: 
1. V.V.Slezov, Kinetics of First Order Phase Transitions, WILEY-VCH (2009).
https://doi.org/10.1002/9783527627769
 
2. J.Schmelzer, V.Slezov, A.Abyzov. New Method of Determination of the Coefficients of Emission in Nucleation Theory. Nucleation Theory and Applications. Physics of radiation effects in crystals. Modern problems in condensed matter sciences. 13, ch.3 (2005).
https://doi.org/10.1002/3527604790.ch3
 
3. J.Schmelzer, H.Ulbricht, J. Colloid Interface Sci., 128, 104 (1989).
https://doi.org/10.1016/0021-9797(89)90389-5
 
4. S.A.Kukushkin, J. Appl. Phys., 98, 033503 (2005).
https://doi.org/10.1063/1.1957131
 
5. V.I.Dubinko, A.V.Tur, A.A.Turkin, V.V.Yanovskiy, Fizika Metallov, 68, 143 (1989).
 
6. R.S.Berry, B.M.Smirnov, Zh. Eksper. i Teor. Fiziki, 100, 1129 (2005).
https://doi.org/10.1134/1.1995797
 
7. V.V.Yanovsky, M.I.Kopp, M.A.Ratner, Functional Materials, 26, 131 (2019).
https://doi.org/10.15407/fm26.01.131
 
8. B.M.Smirnov, UFN, 177, 369 (2007).
https://doi.org/10.3367/UFNr.0177.200704d.0369
 
9. B.M.Smirnov, Clusters and Small Particles: in Gases and Plasmas, Springer-Verlag, NY (2000).
https://doi.org/10.1007/978-1-4612-1294-2
 
10. B.M.Smirnov, Usp. Fiz. Nauk, 164, 1165 (1994).
https://doi.org/10.3367/UFNr.0164.199411b.1165
 
11. C.X.Wang, G.W.Yang, Mater. Sci. Engin.: R: Reports, 49, 157 (2005).
https://doi.org/10.1016/j.mser.2005.06.002
 
12. L.Verlet, Phys. Rev., 159, 99 (1967)
https://doi.org/10.1103/PhysRev.159.98
 
13. H.C.Andersen, Rattle, J. Comput. Phys., 52, 24 (1983).
https://doi.org/10.1016/0021-9991(83)90014-1
 
14. M.A.Ratner, V.V.Yanovsky, Functional Materials, 23, 612 (2016).
https://doi.org/10.15407/fm23.04.427
 
15. V.Mankad, P.K.Jha, T.R.Ravindran, J. Appl. Phys., 113, 074303 (2013).
https://doi.org/10.1063/1.4792654
 
16. P.K.Jha, Ind. J. Appl. Phys., 44, 87 (2006).

Current number: